[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Efficient Generation of Generalized MNT Elliptic Curves

  • Conference paper
Algebraic Informatics (CAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8080))

Included in the following conference series:

Abstract

Finding suitable elliptic curves for pairing-based cryptosystems is a crucial step for their actual deployment. Miyaji, Nakabayashi and Takano [12] (MNT) were the first to produce ordinary pairing-friendly elliptic curves of prime order with embedding degree \( k \in \lbrace 3, 4, 6 \rbrace \). Scott and Barreto [16] as well as Galbraith et al. [10] extended this method by allowing the group order to be non-prime. The advantage of this idea is the construction of much more suitable elliptic curves, which we will call generalized MNT curves. A necessary step for the construction of such elliptic curves is finding the solutions of a generalized Pell equation. However, these equations are not always solvable and this fact considerably affects the efficiency of the curve construction. In this paper we discuss a way to construct generalized MNT curves through Pell equations which are always solvable and thus considerably improve the efficiency of the whole generation process. We provide analytic tables with all polynomial families that lead to non-prime pairing-friendly elliptic curves with embedding degree \( k \in \lbrace 3, 4, 6 \rbrace \) and discuss the efficiency of our method through extensive experimental assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 32.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 41.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkin, A.O.L., Morain, F.: Elliptic Curves and Primality Proving. Mathematics of Computation 61, 29–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM Journal of Computing 32(3), 586–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Duan, P., Cui, S., Wah Chan, C.: Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems. International Journal of Information Technology 2(2), 157–163 (2005)

    Google Scholar 

  8. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves. Journal of Cryptology 23, 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Galbraith, S.D., McKee, J., Valença, P.: Ordinary Abelian Varieties Having Small Embedding Degree. Finite Fields and Their Applications 13(4), 800–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karabina, K., Teske, E.: On Prime-Order Elliptic Curves with Embedding Degrees k = 3, 4, and 6. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 102–117. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve Traces for FR-Reduction. IEICE Transactions Fundamentals E84-A(5), 1234–1243 (2001)

    Google Scholar 

  13. Mollin, R.A.: Fundamental Number Theory with Applications. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  14. Mollin, R.A.: Simple Continued Fraction Solutions for Diophantine Equations. Expositiones Mathematicae 19, 55–73 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robertson, J.P.: Solving the Generalized Pell Equation x 2 − Dy 2 = N (2004), http://hometown.aol.com/jpr2718/

  16. Scott, M., Barreto, P.S.L.M.: Generating more MNT Elliptic Curves. Designs, Codes and Cryptography 38, 209–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fotiadis, G., Konstantinou, E. (2013). On the Efficient Generation of Generalized MNT Elliptic Curves. In: Muntean, T., Poulakis, D., Rolland, R. (eds) Algebraic Informatics. CAI 2013. Lecture Notes in Computer Science, vol 8080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40663-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40663-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40662-1

  • Online ISBN: 978-3-642-40663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics