[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trajectory Planning and Stabilization for Formations Acting in Dynamic Environments

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

Abstract

A formation driving mechanism suited for utilization of multi-robot teams in highly dynamic environments is proposed in this paper. The presented approach enables to integrate a prediction of behaviour of moving objects in robots’ workspace into a formation stabilization and navigation framework. It will be shown that such an inclusion of a model of the surrounding environment directly into the formation control mechanisms facilitates avoidance manoeuvres in a case of fast dynamic objects approaching in a collision course. Besides, the proposed model predictive control based approach enables to stabilize robots in a compact formation and it provides a failure tolerance mechanism with an inter collision avoidance. The abilities of the algorithm are verified via numerous simulations and hardware experiments with the main focus on evaluation of performance of the algorithm with different sensing capabilities of the robotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robotics and Autonomous Systems 58(5), 727–736 (2010)

    Article  Google Scholar 

  2. Ren, W.: Decentralization of virtual structures in formation control of multiple vehicle systems via consensus strategies. European Journal of Control 14, 93–103 (2008)

    Article  MathSciNet  Google Scholar 

  3. Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology 9(6), 777–790 (2001)

    Article  Google Scholar 

  4. Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. Journal of Intelligent and Robotic Systems 58(2) (2010)

    Google Scholar 

  5. Langer, D., Rosenblatt, J., Hebert, M.: A behavior-based system for off-road navigation. IEEE Transactions on Robotics and Automation 10(6), 776–783 (1994)

    Article  Google Scholar 

  6. Lawton, J., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Transactions on Robotics and Automation 19(6), 933–941 (2003)

    Article  Google Scholar 

  7. Min, H.J., Papanikolopoulos, N.: Robot formations using a single camera and entropy-based segmentation. Journal of Intelligent and Robotic Systems (1), 1–21 (2012)

    Google Scholar 

  8. Chen, J., Sun, D., Yang, J., Chen, H.: Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int. Journal Robotic Research 29, 727–747 (2010)

    Article  Google Scholar 

  9. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Transactions on Robotics and Automation 18(5), 813–825 (2003)

    Article  Google Scholar 

  10. Dong, W.: Robust formation control of multiple wheeled mobile robots. Journal of Intelligent and Robotic Systems 62(3-4), 547–565 (2011)

    Article  MATH  Google Scholar 

  11. Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. Journal of Intelligent and Robotic Systems 64(2), 245–275 (2011)

    Article  MATH  Google Scholar 

  13. Xiao, F., Wang, L., Chen, J., Gao, J.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. Journal of Intelligent and Robotic Systems 58(2), 125–147 (2010)

    Article  MATH  Google Scholar 

  15. Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: Uav formation flight based on nonlinear model predictive control. Mathematical Problems in Engineering 2012(1), 1–16 (2012)

    Article  Google Scholar 

  16. Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Science China Information Sciences 53, 223–235 (2010)

    Article  Google Scholar 

  17. Shin, J., Kim, H.: Nonlinear model predictive formation flight. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(5), 1116–1125 (2009)

    Article  Google Scholar 

  18. Saska, M., Mejia, J.S., Stipanovic, D.M., Schilling, K.: Control and navigation of formations of car-like robots on a receding horizon. In: Proc. of 3rd IEEE Multi-conference on Systems and Control (2009)

    Google Scholar 

  19. Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: IEEE International Conference on Robotics and Automation, ICRA (2013)

    Google Scholar 

  20. Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., Preucil, L.: Syrotek - distance teaching of mobile robotics. IEEE Transactions on Education 56(1), 18–23 (2013)

    Article  Google Scholar 

  21. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robotics and Autonomous Systems 46, 65–78 (2004)

    Article  Google Scholar 

  22. Saska, M., Hess, M., Schilling, K.: Efficient airport snow shoveling by applying autonomous multi-vehicle formations. In: Proc. of IEEE International Conference on Robotics and Automation (May 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saska, M., Spurný, V., Přeučil, L. (2013). Trajectory Planning and Stabilization for Formations Acting in Dynamic Environments. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics