Abstract
Re-ranking and re-retrieval of search results are useful techniques for satisfying users’ search intentions, since current search engines cannot always return user-desired pages at the top ranks. In this paper, we propose a system for personalized Web search considering users’ emotional aspects. Given a query topic, the system presents the major emotion tendency on this topic that search results returned from search engines are reflecting. The system also enables users to specify the polarities and strengths of their emotions (e.g., happy or sad, glad or angry, peaceful or strained) on this topic and offers a re-ranking list of initial search results based on the similarity of emotions. Particularly, the system can automatically obtain Web pages with minor emotion tendency on the query topic by extracting sub-queries with opposite emotions and conducting a re-retrieval. Experimental evaluations show the re-ranking and the re-retrieval achieve encouraging search results in comparison with initial search results.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Zhuang, Z., Cucerzan, S.: Re-ranking search results using query logs. In: CIKM 2006, pp. 860–861 (2006)
Bogers, T., van den Bosch, A.: Authoritative re-ranking of search results. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 519–522. Springer, Heidelberg (2006)
Bendersky, M., Kurland, O.: Re-ranking search results using document-passage graphs. In: SIGIR 2008, pp. 853–854 (2008)
Yan, J., Liu, N., Chang, E.Q., Ji, L., Chen, Z.: Search result re-ranking based on gap between search queries and social tags. In: WWW 2009, pp. 1197–1198 (2009)
Tyler, S.K., Wang, J., Zhang, Y.: Utilizing re-finding for personalized information retrieval. In: CIKM 2010, pp. 1469–1472 (2010)
Kang, C., Wang, X., Chen, J., Liao, C., Chang, Y., Tseng, B.L., Zheng, Z.: Learning to re-rank Web search results with multiple pairwise features. In: WSDM 2011, pp. 735–744 (2011)
Chang, P., Huang, Y., Yang, C., Lin, S., Cheng, P.: Learning-based time-sensitive re-ranking for Web search. In: SIGIR 2012, pp. 1101–1102 (2012)
Kharitonov, E., Serdyukov, P.: Demographic context in Web search re-ranking. In: CIKM 2012, pp. 2555–2558 (2012)
Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: SIGIR 1996, pp. 4–11 (1996)
Tao, T., Zhai, C.: Regularized estimation of mixture models for robust pseudo-relevance feedback. In: SIGIR 2006, pp. 162–169 (2006)
Chirita, P., Firan, C.S., Nejdl, W.: Personalized query expansion for the Web. In: SIGIR 2007, pp. 7–14 (2007)
Cao, G., Nie, J., Gao, J., Robertson, S.: Selecting good expansion terms for pseudo-relevance feedback. In: SIGIR 2008, pp. 243–250 (2008)
Yin, Z., Shokouhi, M., Craswell, N.: Query expansion using external evidence. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 362–374. Springer, Heidelberg (2009)
Lin, Y., Lin, H., Jin, S., Ye, Z.: Social annotation in query expansion: a machine learning approach. In: SIGIR 2011, pp. 405–414 (2011)
Oliveira, V., Gomes, G., Belem, F., Brandao, W.C., Almeida, J.M., Ziviani, N., Goncalves, M.A.: Automatic query expansion based on tag recommendation. In: CIKM 2012, pp. 1985–1989 (2012)
Zhao, L., Callan, J.: Automatic term mismatch diagnosis for selective query expansion. In: SIGIR 2012, pp. 515–524 (2012)
Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2007)
liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)
Arapakis, I., Jose, J.M., Gray, P.D.: Affective feedback: an investigation into the role of emotions in the information seeking process. In: SIGIR 2008, pp. 395–402 (2008)
Arapakis, I., Athanasakos, K., Jose, J.M.: A comparison of general vs personalised affective models for the prediction of topical relevance. In: SIGIR 2010, pp. 371–378 (2010)
Moshfeghi, Y., Jose, J.M.: Role of emotional features in collaborative recommendation. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 738–742. Springer, Heidelberg (2011)
Eguchi, K., Lavrenko, V.: Sentiment retrieval using generative models. In: EMNLP 2006, pp. 345–354 (2006)
Zhang, M., Ye, X.: A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval. In: SIGIR 2008, pp. 411–418 (2008)
Huang, X., Croft, W.B.: A unified relevance model for opinion retrieval. In: CIKM 2009, pp. 947–956 (2009)
Li, B., Zhou, L., Feng, S., Wong, K.: A unified graph model for sentence-Based opinion retrieval. In: ACL 2010, pp. 1367–1375 (2010)
Zhang, W., Yu, C.T., Meng, W.: Opinion retrieval from blogs. In: CIKM 2007, pp. 831–840 (2007)
Luo, Z., Osborne, M., Wang, T.: Opinion retrieval in Twitter. In: ICWSM (2012)
Yahoo! Web Search API, http://developer.yahoo.co.jp/webapi/search/websearch/v2/websearch.html
Zhang, J., Kawai, Y., Kumamoto, T., Nakajima, S., Shiraishi, Y.: Diverse sentiment comparison of news websites over time. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 434–443. Springer, Heidelberg (2012)
Yahoo! Term Extraction, http://developer.yahoo.com/search/content/V1/termExtraction.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Zhang, J., Minami, K., Kawai, Y., Shiraishi, Y., Kumamoto, T. (2013). Personalized Web Search Using Emotional Features. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds) Availability, Reliability, and Security in Information Systems and HCI. CD-ARES 2013. Lecture Notes in Computer Science, vol 8127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40511-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-40511-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40510-5
Online ISBN: 978-3-642-40511-2
eBook Packages: Computer ScienceComputer Science (R0)