[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fréchet Queries in Geometric Trees

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

Let T be a tree that is embedded in the plane and let Δ, ε > 0 be real numbers. The aim is to preprocess T into a data structure, such that, for any query polygonal path Q, we can decide if T contains a path P whose Fréchet distance δ F (P,Q) to Q is less than Δ. We present an efficient data structure that solves an approximate version of this problem, for the case when T is c-packed and each of the edges of T and Q has length Ω(Δ) (not required if T is a path): If the data structure returns NO, then there is no such path P. If it returns YES, then \(\delta_F(P,Q) \leq \sqrt{2} (1+\varepsilon )\Delta\) if Q is a line segment, and δ F (P,Q) ≤ 3(1 + ε)Δ otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H.: The computational geometry of comparing shapes. In: Albers, S., Alt, H., Näher, S. (eds.) Festschrift Mehlhorn. LNCS, vol. 5760, pp. 235–248. Springer, Heidelberg (2009)

    Google Scholar 

  2. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. Journal of Algorithms 49(2), 262–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2003)

    Article  MathSciNet  Google Scholar 

  5. de Berg, M., Cook, A.F., Gudmundsson, J.: Fast Fréchet queries. Computational Geometry – Theory and Applications 46(6), 747–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: VLDB, pp. 853–864 (2005)

    Google Scholar 

  7. Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult is it to walk the dog? In: EuroCG, pp. 170–173 (2007)

    Google Scholar 

  8. Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four soviets walk the dog - with an application to Alt’s conjecture. CoRR abs/1209.4403 (2012)

    Google Scholar 

  9. Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map matching with respect to the Fréchet distance. In: ALENEX, pp. 75–83 (2011)

    Google Scholar 

  10. Cheng, S.W., Cheong, O., Everett, H., van Oostrum, R.: Hierarchical decompositions and circular ray shooting in simple polygons. Discrete & Computational Geometry 32, 401–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cole, R., Vishkin, U.: The accelerated centroid decomposition technique for optimal parallel tree evaluation in logarithmic time. Algorithmica 3, 329–346 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Driemel, A., Har-Peled, S.: Jaywalking your dog: computing the Fréchet distance with shortcuts. In: SODA, pp. 318–337 (2012)

    Google Scholar 

  13. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. Discrete & Computational Geometry 48, 94–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico di Palermo 22, 1–74 (1906)

    Article  MATH  Google Scholar 

  15. McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14, 257–276 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wenk, C.: Shape matching in higher dimensions, Dissertation, Freie Universität Berlin, Germany (2003)

    Google Scholar 

  17. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: Localizing global curve-matching algorithms. In: SSDBM, pp. 379–388 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gudmundsson, J., Smid, M. (2013). Fréchet Queries in Geometric Trees. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics