[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Revisiting the Problem of Searching on a Line

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

We revisit the problem of searching for a target at an unknown location on a line when given upper and lower bounds on the distance D that separates the initial position of the searcher from the target. Prior to this work, only asymptotic bounds were known for the optimal competitive ratio achievable by any search strategy in the worst case. We present the first tight bounds on the exact optimal competitive ratio achievable, parametrized in terms of the given range for D, along with an optimal search strategy that achieves this competitive ratio. We prove that this optimal strategy is unique and that it cannot be computed exactly in general. We characterize the conditions under which an optimal strategy can be computed exactly and, when it cannot, we explain how numerical methods can be used efficiently. In addition, we answer several related open questions and we discuss how to generalize these results to m rays, for any m ≥ 2.

This research has been partially funded by NSERC and FQRNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, S., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. App. Prob. 36(1), 223–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research & Management Science. Kluwer Academic Publishers (2003)

    Google Scholar 

  3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. & Comp. 106(2), 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.: Minimization problem. Bull. AMS 62(3), 270 (1956)

    Article  Google Scholar 

  5. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: Exploring and mapping directed graphs. In: STOC, pp. 269–278 (1998)

    Google Scholar 

  6. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Asynchronous deterministic rendezvous in bounded terrains. Theor. Comp. Sci. 412(50), 6926–6937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. In: SODA, pp. 737–747 (2013)

    Google Scholar 

  9. Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. Comput. Geom. 18(3), 125–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hipke, C.A., Icking, C., Klein, R., Langetepe, E.: How to find a point on a line within a fixed distance. Disc. App. Math. 93(1), 67–73 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoggatt, V., Long, C.: Divisibility properties of generalized fibonacci polynomials. Fibonacci Quart. 12(2), 113–120 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Koutsoupias, E., Papadimitriou, C.H., Yannakakis, M.: Searching a fixed graph. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. López-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theor. Comp. Sci. 261(2), 267–295 (2001)

    Article  MATH  Google Scholar 

  14. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comp. Sci. 355(3), 315–326 (2006)

    Article  MATH  Google Scholar 

  15. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bose, P., De Carufel, JL., Durocher, S. (2013). Revisiting the Problem of Searching on a Line. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics