[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identifying Dominant Economic Sectors and Stock Markets: A Social Network Mining Approach

  • Conference paper
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7867))

Included in the following conference series:

Abstract

We propose a method to identify dominant economic sectors and stock markets using a social network approach to mining stock market data. Closing price data from January 1998 through January 2011 of 2698 stocks selected from 17 major stock market indices have been used in the analysis. A Minimum Spanning Tree (MST) has been constructed using the cross-correlations between weekly returns of the stocks. The MST has been chosen to obtain a simplified but connected network having linkages among similarly behaving stocks and it constitutes a social network of stocks for our study. The macroscopic interdependence networks among economic sectors as well as among stock markets have been derived from the microscopic linkages among stocks in the MST. The analysis of these derived macroscopic networks demonstrates that the European and the North American stock markets and Financial, Industrials, Materials, and Consumer Discretionary economic sectors dominate in the global stock markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, J., Faust, K., et al.: Capturing context: Integrating spatial and social network analyses. Social Networks 34(1), 1–5 (2012)

    Article  Google Scholar 

  2. Aydemir, O., Demirhan, E.: The Relationship between Stock Prices and Exchange Rates: Evidence from Turkey. International Research Journal of Finance and Economics, 207–215 (2009) ISSN 1450-2887(23)

    Google Scholar 

  3. Bakker, L., Hare, W., et al.: A social network model of investment behavior in the stock market. Physica A 389, 1223–1229 (2010)

    Article  Google Scholar 

  4. Barabási, A.L.: Scale-Free Networks: A Decade and Beyond. Science 325(5939), 412–413 (2009), doi:10.1126/science.1173299

    Article  MathSciNet  Google Scholar 

  5. Bessler, D.A., Yang, J.: The structure of interdependence in international stock markets. Journal of International Money and Finance 22, 261–287 (2003)

    Article  Google Scholar 

  6. Boginski, V., Butenko, S., et al.: Mining market data: A network approach. Computers & Operations Research 33, 3171–3184 (2006)

    Article  MATH  Google Scholar 

  7. Bonacich, P.: Power and Centrality: A Family of Measures. The American Journal of Sociology 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  8. Buchanan, M.: Meltdown Modelling. Nature 460(6), 680–682 (2009)

    Article  Google Scholar 

  9. Burt, R.S.: Structural Holes and Good Ideas. American Journal of Sociology 110(2), 349–399 (2004)

    Article  Google Scholar 

  10. Büttner, D., Hayo, B.: Determinants of European stock market integration. Economic Systems 35(4), 574–585 (2011)

    Article  Google Scholar 

  11. Caraiani, P.: Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics. Physica A: Statistical Mechanics and its Applications 391(13), 3629–3637 (2012)

    Article  Google Scholar 

  12. Christakis, N., Fowler, J.: The collective dynamics of smoking in a large social network. New England Journal of Medicine 358(21), 2249–2258 (2008)

    Article  Google Scholar 

  13. Dicle, M.F., Beyhan, A., et al.: Market Efficiency and International Diversification: Evidence from India. International Review of Economics and Finance 19, 313–339 (2010)

    Article  Google Scholar 

  14. Eryiğit, M., Eryiğit, R.: Network structure of cross-correlations among the world market indices. Physica A: Statistical Mechanics and its Applications 388(17), 3551–3562 (2009)

    Article  Google Scholar 

  15. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460(6), 685–686 (2009)

    Article  Google Scholar 

  16. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  17. Garas, A., Argyrakis, P.: Correlation study of the Athens Stock Exchange. Physics A 380, 399–410 (2007)

    Article  Google Scholar 

  18. Hatemi-J, A., Roca, E.: Exchange rates and stock prices interaction during good and bad times: evidence from the ASEAN4 countries. Applied Financial Economics 15(8), 539–546 (2005)

    Article  Google Scholar 

  19. Huang, W.-Q., Zhuang, X.-T., et al.: A network analysis of the Chinese stock market. Physica A 388, 2956–2964 (2009)

    Article  Google Scholar 

  20. Jin, Y., Lin, C.-Y., et al.: Mining dynamic social networks from public news articles for company value prediction. Social Network Analysis and Mining (2012), doi:10.1007/s13278-011-0045-5

    Google Scholar 

  21. Lin, M., Li, N.: Scale-free network provides an optimal pattern for knowledge transfer. Physica A: Statistical Mechanics and its Applications 389(3), 473–480 (2010)

    Article  Google Scholar 

  22. Lyócsa, Š., Výrost, T., et al.: Stock market networks: The dynamic conditional correlation approach. Physica A 391(16), 4147–4158 (2012)

    Article  Google Scholar 

  23. Markose, S.M.: Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS). The Economic Journal 115, F159–F192 (2005)

    Google Scholar 

  24. Mauboussin, M.J.: Revisiting Market Efficiency: The Stock Market as a Complex Adaptive System. Journal of Applied Corporate Finance 14(4), 8–16 (2002)

    Article  Google Scholar 

  25. Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Physical Review E 78, 036107; arXiv:0805.3322v2 [physics.soc-ph] (2008)

    Google Scholar 

  26. Rosen, D., Barnett, G.A., et al.: Social networks and online environments: when science and practice co-evolve. Social Network Analysis and Mining 1(1), 27–42 (2010)

    Article  Google Scholar 

  27. Roy, R.B., Sarkar, U.K.: Capturing Early Warning Signal for Financial Crisis from the Dynamics of Stock Market Networks: Evidence from North American and Asian Stock Markets. In: Society for Computational Economics 16th International Conference on Computing in Economics and Finance, London, UK (2010)

    Google Scholar 

  28. Roy, R.B., Sarkar, U.K.: Identifying influential stock indices from global stock markets: A social network analysis approach. In: The 2nd International Conference on Ambient Systems, Networks and Technologies (ANT), Ontario, Canada. Procedia Computer Science, vol. 5, pp. 442–449 (2011)

    Google Scholar 

  29. Roy, R.B., Sarkar, U.K.: A social network approach to examine the role of influential stocks in shaping interdependence structure in global stock markets. In: International Conference on Advances in Social Network Analysis and Mining (ASONAM), Kaohsiung, Taiwan, pp. 567–569 (2011a), doi:10.1109/ASONAM.2011.87

    Google Scholar 

  30. Roy, R.B., Sarkar, U.K.: A social network approach to change detection in the interdependence structure of global stock markets. Social Network Analysis and Mining (2012), doi:10.1007/s13278-012-0063-y

    Google Scholar 

  31. Scott, J.: Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining 1(1), 21–26 (2011), doi:10.1007/s13278-010-0012-6

    Article  Google Scholar 

  32. Tse, C.K., Liu, J., et al.: A network perspective of the stock market. Journal of Empirical Finance (2010), doi:10.1016/j. jempfin.2010.04.008

    Google Scholar 

  33. Wang, M.L., Wang, C.P., et al.: Relationships among Oil Price, Gold Price, Exchange Rate and International Stock Markets. International Research Journal of Finance and Economics, 83–92 (2010) ISSN 1450-2887(47)

    Google Scholar 

  34. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, pp. 461–502. Cambridge University Press (1994)

    Google Scholar 

  35. Weiss, M.A.: Data Structures and Algorithm Analysis in C, 2nd edn., pp. 330–332 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roy, R.B., Sarkar, U.K. (2013). Identifying Dominant Economic Sectors and Stock Markets: A Social Network Mining Approach. In: Li, J., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40319-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40319-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40318-7

  • Online ISBN: 978-3-642-40319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics