[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Feature Selection and Feature Contrasting Approach Based on Quality Metric: Application to Efficient Classification of Complex Textual Data

  • Conference paper
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7867))

Included in the following conference series:

Abstract

Feature maximization is a cluster quality metric which favors clusters with maximum feature representation as regard to their associated data. In this paper we go one step further showing that a straightforward adaptation of such metric can provide a highly efficient feature selection and feature contrasting model in the context of supervised classification. We more especially show that this technique can enhance the performance of classification methods whilst very significantly outperforming (+80%) the state-of-the art feature selection techniques in the case of the classification of unbalanced, highly multidimensional and noisy textual data, with a high degree of similarity between the classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  2. Attik, M., Lamirel, J.-C., Al Shehabi, S.: Clustering analysis for data with multiple labels. In: Proceedings of the IASTED International Conference on Databases and Applications (DBA), Innsbruck, Austria (2006)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A Review of Feature Selection Methods on Synthetic Data. Knowledge and Information Systems, 1–37 (2012)

    Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  6. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelligence 151(1), 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daviet, H.: Class-Add, une procédure de sélection de variables basée sur une troncature k-additive de l’ information mutuelle et sur une classification ascendante hiérarchique en pré-traitement. PhD, Université de Nantes, France (2009)

    Google Scholar 

  8. Forman, G.: An extensive empirical study of feature selection metrics for text classification. The Journal of Machine Learning Research 3, 1289–1305 (2003)

    MATH  Google Scholar 

  9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1), 389–422 (2002)

    Article  MATH  Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  11. Hall, M.A., Smith, L.A.: Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper. In: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference, pp. 235–239. AAAI Press (1999)

    Google Scholar 

  12. Hajlaoui, K., Cuxac, P., Lamirel, J.-C., François, C.: Enhancing patent expertise through automatic matching with scientific papers. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS, vol. 7569, pp. 299–312. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  14. Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Ladha, L., Deepa, T.: Feature selection methods and algorithms. International Journal on Computer Science and Engineering 3(5), 1787–1797 (2011)

    Google Scholar 

  16. Lallich, S., Rakotomalala, R.: Fast Feature Selection Using Partial Correlation for Multi-valued Attributes. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 221–231. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Lamirel, J.-C., Al Shehabi, S., Francois, C., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application to patent analysis and web mapping. Scientometrics 60(3) (2004)

    Google Scholar 

  18. Lamirel, J.-C., Ta, A.P.: Combination of hyperbolic visualization and graph-based approach for organizing data analysis results: an application to social network analysis. In: Proceedings of the 4th International Conference on Webometrics, Informetrics and Scientometrics and 9th COLLNET Meeting, Berlin, Germany (2008)

    Google Scholar 

  19. Lamirel, J.-C., Ghribi, M., Cuxac, P.: Unsupervised recall and precision measures: a step towards new efficient clustering quality indexes. In: Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT 2010), Paris, France (2010)

    Google Scholar 

  20. Lamirel, J.-C., Mall, R., Cuxac, P., Safi, G.: Variations to incremental growing neural gas algorithm based on label maximization. In: Proceedings of IJCNN 2011, San Jose, CA, USA (2011)

    Google Scholar 

  21. Lamirel, J.-C.: A new approach for automatizing the analysis of research topics dynamics: application to optoelectronics research. Scientometrics 93, 151–166 (2012)

    Article  Google Scholar 

  22. Mejía-Lavalle, M., Sucar, E., Arroyo, G.: Feature selection with a perceptron neural net. Feature Selection for Data Mining: Interfacing Machine Learning and Statistics (2006)

    Google Scholar 

  23. Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2(11), 559–572 (1901)

    Article  Google Scholar 

  24. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press (1998)

    Google Scholar 

  25. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  26. Salton, G.: Automatic processing of foreign language documents. Prentice-Hill, Englewood Cliffs (1971)

    Google Scholar 

  27. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  28. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing (1994)

    Google Scholar 

  29. Su, J., Zhang, H., Ling, C., Matwin, S.: Discriminative parameter learning for bayesian networks. In: ICML (2008)

    Google Scholar 

  30. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2005)

    Google Scholar 

  31. Yu, L., Liu, H.: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: ICML 2003, Washington DC, USA, pp. 856–863 (2003)

    Google Scholar 

  32. Zhang, T., Oles, F.J.: Text categorization based on regularized linear classification methods. Inf. Retr. 4(1), 5–31 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamirel, JC., Cuxac, P., Chivukula, A.S., Hajlaoui, K. (2013). A New Feature Selection and Feature Contrasting Approach Based on Quality Metric: Application to Efficient Classification of Complex Textual Data. In: Li, J., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40319-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40319-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40318-7

  • Online ISBN: 978-3-642-40319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics