[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Empirical Comparison of Visual Descriptors for Multiple Bleeding Spots Recognition in Wireless Capsule Endoscopy Video

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

Abstract

Wireless Capsule Endoscopy (WCE) is the latest technology able to screen intestinal anomalies at early stage. Although its convenience to the patient and its effectiveness to show small intestinal details, the physician diagnosis remains not straight forward and time consuming. Thus, a computer aid diagnosis would be helpful. In this paper, we focus on The Multiple Bleeding Spots (MBS) anomaly. We propose to conduct an empirical evaluation of four feature descriptors in a the challenging problem of MBS recognition on WCE video using the SVM classifier. The performance of the four descriptors is based on the assessment of the performance of the output of the SVM classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerber, J., Bergwerk, A., Fleischer, D.: Gastrointestinal Endoscopy, vol. 66, pp. 1188–1195 (2007)

    Google Scholar 

  2. Li, B., Meng, M.-H.: Wireless capsule endoscopy images enhancement using contrast driven forward and backward anisotropic diffusion. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 2, pp. II–437 (2007)

    Google Scholar 

  3. Miaou, S., Chang, F., Timotius, I., Huang, H.: A Multi-stage Recognition System to Detect Different Types of Abnormality in Capsule Endoscope Images. Journal of Medical and Biological Engineering 29, 114–121 (2009)

    Google Scholar 

  4. Mewes, P.W., Rennert, P., Juloski, A.L., Lalande, A., Angelopoulou, E., Kuth, R., Hornegger, J.: Semantic and topological classification of images in magnetically guided capsule endoscopy. In: SPIE Medical Imaging, p. 83151A (2012)

    Google Scholar 

  5. Kodogiannis, V., Lygouras, J.N.: Neuro-fuzzy classification system for wireless-capsule endoscopic images. Int. J. Electr. Comput. Syst. Eng. 2, 55–63 (2008)

    Google Scholar 

  6. Bashar, M., Kitasaka, T., Suenaga, Y., Mekada, Y., Mori, K.: Automatic Detection of Informative Frames from Wireless Capsule Endoscopy Images. In: Medical Image Analysis, vol. 14, pp. 449–470 (2010)

    Google Scholar 

  7. Suykens, J., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. In: Neural Processing Letters, 9th edn., pp. 293–300 (1999)

    Google Scholar 

  8. Khun, P.C., Zhuo, Z., Yang, L.Z., Liyuan, L., Jiang, L.: Feature selection and classification for wireless capsule endoscopic frames. In: International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009, pp. 1–6 (2009)

    Google Scholar 

  9. References, B., Li, M.: Capsule endoscopy images classification by color texture and support vector machine. In: 2010 IEEE International Conference on Automation and Logistics (ICAL), pp. 126–131 (2010)

    Google Scholar 

  10. References, L., Yu, P., Yuen, J.: Ulcer detection in wireless capsule endoscopy images. In: ICPR, pp. 45–48 (2012)

    Google Scholar 

  11. References, Y.-G.: Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform. International Journal of Biological and Life Sciences, World Academy of Science, Engineering and Technology 60, 1030–1034 (2011)

    Google Scholar 

  12. Stricker, M., Orengo, M.: Similarity of color image. In: SPIE Conference on Storage and Retrieval for Image and Video Databases III, vol. 2420, pp. 381–392 (February 1995)

    Google Scholar 

  13. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  14. Jain, A.K., Ratha, N.K., Lakshmanan, S.: Object detection using Gabor filters. Pattern Recognition 30(2), 295–309 (1997)

    Article  Google Scholar 

  15. Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG 7: Multimedia content description language. John Wiley (2002)

    Google Scholar 

  16. Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20 (1995)

    Google Scholar 

  17. Nixon, M.S., Aguado, A.S.: Feature Extraction and Image Processing for Computer Vision, 3rd edn (2012)

    Google Scholar 

  18. Coimbra, M.T., Cunha, J.P.S.: MPEG-7 Visual Descriptors—Contributions for Automated Feature Extraction in Capsule Endoscopy. Circuits and Systems for Video Technology 16, 628–637 (2006)

    Article  Google Scholar 

  19. Baopu, L., Meng, M.Q.H.: Tumor Recognition in Wireless Capsule Endoscopy Images Using Textural Features and SVM-Based Feature Selection. Information Technology in Biomedicine 16, 323–329 (2012)

    Article  Google Scholar 

  20. http://www.PillCam.com

  21. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognition 37, 567–581 (2004)

    Article  Google Scholar 

  22. Swets, J.A.: Signal detection theory and ROC analysis in psychology and diagnostics: collected papers. Lawrence Erlbaum Associates, Mahwah (1996)

    MATH  Google Scholar 

  23. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction, 2nd edn (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alotaibi, S., Qasim, S., Bchir, O., Ben Ismail, M.M. (2013). Empirical Comparison of Visual Descriptors for Multiple Bleeding Spots Recognition in Wireless Capsule Endoscopy Video. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics