Abstract
Metallography is the science of studying the physical properties of metal microstructures, by means of microscopes. While traditional approaches involve the direct observation of the acquired images by human experts, Computer Vision techniques may help experts in the analysis of the inspected materials. In this paper we present an automated system to classify the phases of a Titanium alloy, Ti-6Al-4V. Our system has been tested to analyze the final products of a Friction Stir Welding process, to study the states of the microstructures of the welded material.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems, applications and tools. Image and Vision Computing 21(2), 171–188 (2003)
Tan, W., Chengdong, C., Zhao, C., Li, S.: Study on key technology of metallographical image processing and recognition. In: Control and Decision Conference, CCDC 2008, pp. 1832–1837. Chinese (July 2008)
Gegner, J., Öchsner, A.: Digital image analysis in quantitative metallography. Pract. Metallogr. 38(9), 499–513 (2001)
Komenda, J.: Automatic recognition of complex microstructures using the Image Classifier. Materials Characterization 46(2-3), 87–92 (2001)
Topalova, I., Mihailov, A., Tzokev, A.: Automated classification of heat resistant steel structures based on neural networks. In: IEEE 25th Convention of Electrical and Electronics Engineers in Israel, IEEEI 2008, December 3-5, pp. 437–440 (2008)
Chatterjee, O., Das, K., Dutta, S., Datta, S., Saha, S.K.: Phase extraction and boundary removal in dual phase steel micrographs. In: 2010 Annual IEEE India Conference (INDICON), December 17-19, pp. 1–5 (2010)
Codaro, E.N., Nakazato, R.Z., Horovistiz, A.L., Ribeiro, L.M.F., Ribeiro, R.B., Hein, L.R.O.: An image analysis study of pit formation on Ti–6Al–4V. Materials Science and Engineering: A 341(1-2), 202–210 (2003)
Chrapoński, J., Szkliniarz, W.: Quantitative metallography of two-phase titanium alloys. Materials Characterization 46(2-3), 149–154 (2001)
Tejrzanowski, T., Spychalski, W., Rozniatowski, K.K.: Image Based Analysis of Complex Microstructures of Engineering Materials. Int. J. Appl. Math. Comput. Sci. 18(1), 33–39 (2008)
Sha, W., Malinov, S.: Titanium Alloy: Modelling of Microstructure, Properties and Applications. Woodhead Publishing Series in Metals and Surface Engineering, vol. 31 (April 2009)
Bruschi, S., Poggio, S., Quadrini, F., Tata, M.E.: Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Materials Letters 58(27-28), 3622–3629 (2004)
Buffa, G., Ducato, A., Fratini, L.: Numerical procedure for residual stresses prediction in friction stir welding. Finite Elements in Analysis and Design 47(4), 470–476 (2011)
Fratini, L., Buffa, G., Shivpuri, R.: Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Materialia 58(6), 2056–2067 (2010)
Serrano, N., Savakis, A., Luo, J.: Improved scene classification using efficient low-level features and semantic cues. Pattern Recognition 37, 1773–1784 (2004)
Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)
Won, C.S., Park, D.K.: Efficient Use of MPEG-7 Edge Histogram Descriptor. ETRI Journal 24(1), 23–30 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ducato, A., Fratini, L., La Cascia, M., Mazzola, G. (2013). An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)