Abstract
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters 7(4), 736–740 (2010)
Moser, G., Serpico, S.B.: Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Transactions on Geoscience and Remote Sensing PP(99), 1–19 (2012)
Wu, T., Bae, M.H., Zhang, M., Pan, R., Badea, A.: A prior feature SVM-MRF based method for mouse brain segmentation. NeuroImage 59(3), 2298–2306 (2012)
Besag, E.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B36, 192–236 (1974)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)
Seheult, A.H., Greig, D.M., Porteous, B.T.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 51(2), 271–279 (1989)
Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology 19(2), 120–131 (2009)
Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recognition 45(1), 512–520 (2012)
Spina, T.V., de Miranda, P.A.V., Falcão, A.X.: Intelligent understanding of user interaction in image segmentation. Intl. Journal of Pattern Recognition and Artificial Intelligence, 26(2), 65001-1–1265001-26 (2012)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)
Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Proceedings of the International Symposium on Mathematical Morphology, pp. 253–264. MCT/INPE (2007)
Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)
Wu, F.Y.: The potts model. Reviews of Modern Physics 54, 235–268 (1982)
Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological) 48(3), 259–302 (1986)
Cappabianco, F.A.M., Falcão, A.X., Yasuda, C.L., Udupa, J.K.: Brain tissue mr-image segmentation via optimum-path forest clustering. Computer Vision and Image Understanding 116(10), 1047–1059 (2012)
Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1), 37 (1960)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakamura, R., Osaku, D., Levada, A., Cappabianco, F., Falcão, A., Papa, J. (2013). OPF-MRF: Optimum-Path Forest and Markov Random Fields for Contextual-Based Image Classification. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)