[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

OPF-MRF: Optimum-Path Forest and Markov Random Fields for Contextual-Based Image Classification

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

  • 4380 Accesses

Abstract

Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters 7(4), 736–740 (2010)

    Article  Google Scholar 

  2. Moser, G., Serpico, S.B.: Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Transactions on Geoscience and Remote Sensing PP(99), 1–19 (2012)

    Google Scholar 

  3. Wu, T., Bae, M.H., Zhang, M., Pan, R., Badea, A.: A prior feature SVM-MRF based method for mouse brain segmentation. NeuroImage 59(3), 2298–2306 (2012)

    Article  Google Scholar 

  4. Besag, E.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B36, 192–236 (1974)

    MathSciNet  Google Scholar 

  5. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  6. Seheult, A.H., Greig, D.M., Porteous, B.T.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 51(2), 271–279 (1989)

    Google Scholar 

  7. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology 19(2), 120–131 (2009)

    Article  Google Scholar 

  8. Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recognition 45(1), 512–520 (2012)

    Article  Google Scholar 

  9. Spina, T.V., de Miranda, P.A.V., Falcão, A.X.: Intelligent understanding of user interaction in image segmentation. Intl. Journal of Pattern Recognition and Artificial Intelligence, 26(2), 65001-1–1265001-26 (2012)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)

    Google Scholar 

  11. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Proceedings of the International Symposium on Mathematical Morphology, pp. 253–264. MCT/INPE (2007)

    Google Scholar 

  12. Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, F.Y.: The potts model. Reviews of Modern Physics 54, 235–268 (1982)

    Article  MathSciNet  Google Scholar 

  14. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological) 48(3), 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Cappabianco, F.A.M., Falcão, A.X., Yasuda, C.L., Udupa, J.K.: Brain tissue mr-image segmentation via optimum-path forest clustering. Computer Vision and Image Understanding 116(10), 1047–1059 (2012)

    Article  Google Scholar 

  16. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1), 37 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, R., Osaku, D., Levada, A., Cappabianco, F., Falcão, A., Papa, J. (2013). OPF-MRF: Optimum-Path Forest and Markov Random Fields for Contextual-Based Image Classification. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics