[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Intuitive Large Image Database Browsing Using Perceptual Similarity Enriched by Crowds

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

Abstract

The main objective of image browsers is to empower users to find a desired image with ease, speed and accuracy from a large database. In this paper we present a novel approach at creating an image browsing environment based on human perception with the aim of providing intuitive image navigation. In our approach, similarity judgments form the basic structural organization for the images in our browser. To enrich this we have developed a scalable crowd sourced method of augmenting a database with a large number of additional samples by capturing human judgments from members of a crowd. Experiments were conducted involving two databases that demonstrate the effectiveness of our method as an intuitive, fast browsing environment for large image databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clarke, A.D.F., Halley, F., Newell, A., Griffin, L., Chantler, M.J.: Perceptual similarity: a texture challenge. In: The 22nd British Machine Vision Conference, Dundee (2011)

    Google Scholar 

  2. Chen, J., Bouman, C.A., Dalton, J.: Hirachical Browsing and Search of Large Image Databases. IEEE Transactions on Image Processing, 442–455 (2000)

    Google Scholar 

  3. Combs, T.T.A., Bederson, B.B.: Does zooming improve image browsing? In: Proceedings of the Fourth ACM International Conference on Digital Libraries (1999)

    Google Scholar 

  4. Faria, F.F., Veloso, A., Almeida, H.M., Valle, E., da Torres, R.S., Gonzales, M.A., Meira Jr., W.: Learning to rank for content-based image retrieval. In: MIR 2010, pp. 285–294 (2010)

    Google Scholar 

  5. Heesch, D.: A survey of browsing models for content-based image retrieval. In: Multimedia Tools and Applications, vol. 40, pp. 261–284 (2008)

    Google Scholar 

  6. Holmquist, L.E.: Focus+context visualization with flip zooming and the zoom browser. In: CHI 1997 Extended Abstracts on Human Factors in Computer Systems, CHI EA 1997, pp. 263–264. ACM, New York (1997)

    Google Scholar 

  7. Krishnamachari, S., Abdel-Mottaleb, M.: Image browsing using hierarchical clustering. In: Proceedings IEEE International Symposium on Computers and Communications, pp. 301–307 (1999)

    Google Scholar 

  8. Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Acedemic Publishers, Norwell (1985)

    Book  Google Scholar 

  9. Martinez, J., Loisant, E.: Browsing image databases with galois’ lattices. In: Proceedings of the 2002 ACM Symposium on Applied Computing, SAC 2002, pp. 791–795. ACM, New York (2002)

    Chapter  Google Scholar 

  10. Pedronette, D.C.G., da Torres, R.S.: Exploring contextual information for image re-ranking. In: CIARP, pp. 514–548 (2010)

    Google Scholar 

  11. Perronmin, F., Liu, Y., Renders, J.M.: A family of contextual measures of similarity be-tween distributions with application to image retrieval. In: CVPR, pp. 2358–2365 (2009)

    Google Scholar 

  12. Pang, W.: An intuitive texture picker. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, UIU 2010, pp. 365–368. ACM, New York (2010)

    Google Scholar 

  13. Plant, W., Schaefer, G.: Visualisation and browsing of image databases. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds.) Multimedia Analysis, Processing and Communications. SCI, vol. 346, pp. 3–57. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Rao, A.R., Lohse, G.L.: Identifying high level features of texture perception. CVGIP. Graph. Models Image Processing 55, 218–233 (1993)

    Article  Google Scholar 

  15. Rodden, K.: How do people organize their photographs? In: Proceedings of the BCS IRSG Colloquium (1999)

    Google Scholar 

  16. Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Does organization by similarity assist image browsing? In: CHI 2001: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 190–197. ACM, New York (2001)

    Chapter  Google Scholar 

  17. Rogowiz, B.E., Frese, T., Smith, J.R., Bouman, C.E., Kalin, E.: Perceptual image similarity experiments. In: SPIE Conference on Human Vision and Electronic Imaging (1998)

    Google Scholar 

  18. Schaefer, G.: A next generation browsing environment for large image repositories. In: Multimedia Tools Applications, vol. 47, pp. 105–120 (2010)

    Google Scholar 

  19. Schwander, O., Nielsen, F.: Reranking with contextual dissimilarity measures from repre-sentational Bregman K-means. In: VISAPP, vol. 1, pp. 118–122 (2010)

    Google Scholar 

  20. Strong, G., Gong, M.: Browsing a large collection of community photos based on similarity on GPU. In: Bebis, G., et al. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 390–399. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: the som toolbox. In: Proceeding of the Matlab DSP Conference, pp. 35–40 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padilla, S., Halley, F., Robb, D.A., Chantler, M.J. (2013). Intuitive Large Image Database Browsing Using Perceptual Similarity Enriched by Crowds . In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics