Abstract
For a long period in the development of computers and computing efficient applications were only characterized by computational – and memory complexity or in more practical terms elapsed computing time and required main memory capacity. The history of Euro-Par and its predecessor-organizations stands for research on the development of ever more powerful computer architectures that shorten the compute time both by faster clocking and by parallel execution as well as the development of algorithms that can exhibit these parallel architectural features. The success of enhancing architectures and algorithms is best described by exponential curves regarding the peak computing power of architectures and the efficiency of algorithms. As microprocessor parts get more and more power hungry and electricity gets more and more expensive, “energy to solution” is a new optimization criterion for large applications. This calls for energy aware solutions.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bode, A. (2013). Energy to Solution: A New Mission for Parallel Computing. In: Wolf, F., Mohr, B., an Mey, D. (eds) Euro-Par 2013 Parallel Processing. Euro-Par 2013. Lecture Notes in Computer Science, vol 8097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40047-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-40047-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40046-9
Online ISBN: 978-3-642-40047-6
eBook Packages: Computer ScienceComputer Science (R0)