[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Exponential Family in Abstract Information Theory

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

We introduce generalized notions of a divergence function and a Fisher information matrix. We propose to generalize the notion of an exponential family of models by reformulating it in terms of the Fisher information matrix. Our methods are those of information geometry. The context is general enough to include applications from outside statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barndorff-Nielsen, O.E.: Information and Exponential Families in Statistical Theory. J. Wiley and Sons, New York (1978)

    MATH  Google Scholar 

  2. Naudts, J.: Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 5, 102 (2004)

    MathSciNet  Google Scholar 

  3. Grünwald, P.D., Dawid, A.P.: Game Theory, Maximum Entropy, Minimum Discrepancy and Robust Bayesian Decision Theory. Ann. Stat. 32, 1367–1433 (2004)

    Article  MATH  Google Scholar 

  4. Eguchi, S.: Information geometry and statistical pattern recognition. Sugaku Expositions (Amer. Math. Soc.) 19, 197–216 (2006); originally Sūgaku 56, 380 (2004) (in Japanese)

    MathSciNet  MATH  Google Scholar 

  5. Naudts, J.: The q-exponential family in statistical physics. Cent. Eur. J. Phys. 7, 405–413 (2009)

    Article  Google Scholar 

  6. Amari, S., Ohara, A.: Geometry of q-Exponential Family of Probability Distributions. Entropy 13, 1170–1185 (2011)

    Article  MathSciNet  Google Scholar 

  7. Pistone, G.: Marginal Polytope of a Deformed Exponential Family, arXiv:1112.5123v1

    Google Scholar 

  8. Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs. Oxford University Press, Oxford (2000); originally in Japanese, Iwanami Shoten, Tokyo (1993)

    MATH  Google Scholar 

  9. Bregman, L.M.: The relaxation method to find the common point of convex sets and its applications to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  10. Csiszar, I.: I-Divergence Geometry of Probability Distributions and Minimization Problems. Ann. Prob. 3, 146–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Pol. Acad. Sc.: Techn. Sc. 58, 183–195 (2010)

    Google Scholar 

  12. Naudts, J., Anthonis, B.: Data set models and exponential families in statistical physics and beyond. Mod. Phys. Lett. B 26, 1250062 (2012)

    Article  Google Scholar 

  13. Topsøe, F.: Exponential Families and MaxEnt Calculations for Entropy Measures of Statistical Physics, arXiv:0710.1701

    Google Scholar 

  14. Tsallis, C.: Introduction to nonextensive statistical mechanics. Springer (2009)

    Google Scholar 

  15. Naudts, J.: Generalised Thermostatistics. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naudts, J., Anthonis, B. (2013). The Exponential Family in Abstract Information Theory. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics