Abstract
This article presents a summary of the principal results found in MAR13. Starting with the seminal works on transportation theory of G. Monge and L. Kantorovich, while revisiting the works of Maurice Fréchet, we will introduce direct derivations of the optimal transport problem such as the so-called Alan Wilson’s Entropy Model and the Minimal Trade Problem. We will show that optimal solutions of those models are mainly based in two dual principles: the independance and the indetermination structure between two categorical variables. Thanks to Mathematical Relational Analysis representation and the Antoine Caritat’s (Condorcet) works on Relational Consensus, we will give an interesting interpretation to the indeterminaion structure and underline the duality Relationship between deviation to independence and deviation to indetermination structures. Finally, these results will lead us to the elaboration of a new criterion of modularization for large networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ah-Pine, J., Marcotorchino, F.: Statistical, geometrical and logical independences between categorical Variables. In: Proceedings of the Applied Stochastic Models and Data Analysis, ASMDA 2007 Symposium, Chania, Greece (2007)
Carlier, G.: Optimal Transport and Economic Applications. Lecture Notes IMA, New Mathematical Models in Economics and Finance, pp. 1–82 (2010)
Deming, W.E., Stephan, F.F.: On the least squares adjustment of a sampled frequency table when the expected marginal totals are known. The Annals of Mathematical Statistics 11, 427–444 (1940)
Evans, L.C.: Partial Differential Equations and Monge-Kantorovich Mass Transfer. In: Yau, S.T. (ed.) Current Developments in Mathematics (1997)
Fréchet, M.: Sur les Tableaux de Corrélations dont les Marges sont Données. Annales de l’Université de Lyon, Section. A (14), 53–77 (1951)
Fréchet, M.: Sur les Tableaux de Corrélations dont les Marges et les Bornes sont Données. Revue de l’Institut de Statistique (28), 10–32 (1960)
Fustier, B.: Echanges commerciaux Euro-méditerranéens: essai d’analyse structurale. Revue des Sciences Economiques et de Gestion (3), 1–25 (2004)
Hoffman, A.J.: On simple linear programming problems. In: Klee, V. (ed.) Proceedings of Symposia in Pure Mathematics, vol. VII, pp. 317–327. AMS, Providence (1963)
Janson, S., Vegelius, J.: The J- Index as a Measure of Association For Nominal Scale Response Agreement. Applied Psychological Measurement (1982)
Kantorovich, L.: On the translocation of masses. Comptes Rendus (Doklady) Acad. Sci. URSS (N.S.) (37), 199–201 (1942)
Kendall, G.: Rank correlation methods. Griffin, Londres (1970)
Marcotorchino, F.: Optimal Transport, Spatial Interaction Models and related Problems, impacts on Relational Metrics, adaptation to Large Graphs and Networks Modularity. Internal Publication of Thales (2013)
Marcotorchino, F., Michaud, P.: Optimisation en Analyse Ordinale des Données. Book by Masson, pp. 1–211 (1979)
Marcotorchino, F.: Utilisation des Comparaisons par Paires en Statistique des Contingences (Partie I), Publication du Centre Scientifique IBM de Paris, F057, pp. 1–57. Paris et Cahiers du Séminaire Analyse des Données et Processus Stochastiques Université Libre de Bruxelles, Bruxelles (1984)
Marcotorchino, F.: Utilisation des Comparaisons par Paires en Statistique des Contingences (Partie III). Publication du Centre Scientifique IBM de Paris, F081, pp. 1–39 (1985)
Marcotorchino, F., El Ayoubi, N.: Paradigme logique des écritures relationnelles de quelques critères fondamentaux d’association. Revue de Statistique Appliquée 39(2), 25–46 (1991)
Michaud, P.: Condorcet, a man of the avant garde. Journal of Applied Stochastic Models and Data Analysis 3(2) (1997)
Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666–704 (1781)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Journal of Phys. Rev. E 69 (2004)
Stemmelen, E.: Tableaux d’Echanges, Description et Prévision. Cahiers du Bureau Universitaire de Recherche Opérationnelle, Pairs, vol. (28) (1977)
Villani, C.: Topics in Optimal Transportation. Graduate Studies in mathematics, vol. 58. The American Mathematical Society (2003)
Villani, C.: Transport Optimal de mesure: coup de neuf pour un très vieux problème. Images des Mathématiques, 114–119 (2004)
Wilson, A.G.: A statistical theory of spatial distribution models. Transportation Research 1, 253–269 (1967)
Wilson, A.G.: The use of entropy maximising models. Journal of Transport Economies and Policy 3, 108–126 (1969)
Wilson, A.G.: Entropy in Urban and Regional Modelling, Pion, London (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marcotorchino, F., Céspedes, P.C. (2013). Optimal Transport and Minimal Trade Problem, Impacts on Relational Metrics and Applications to Large Graphs and Networks Modularity. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)