[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algorithms to Measure Diversity and Clustering in Social Networks through Dot Product Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

Social networks are often analyzed through a graph model of the network. The dot product model assumes that two individuals are connected in the social network if their attributes or opinions are similar. In the model, a d-dimensional vector av represents the extent to which individual v has each of a set of d attributes or opinions. Then two individuals u and v are assumed to be friends, that is, they are connected in the graph model, if and only if au · av ≥ t, for some fixed, positive threshold t. The resulting graph is called a d-dot product graph..

We consider two measures for diversity and clustering in social networks by using a d-dot product graph model for the network. Diversity is measured through the size of the largest independent set of the graph, and clustering is measured through the size of the largest clique. We obtain a tight result for the diversity problem, namely that it is polynomial-time solvable for d = 2, but NP-complete for d ≥ 3. We show that the clustering problem is polynomial-time solvable for d = 2. To our knowledge, these results are also the first on the computational complexity of combinatorial optimization problems on dot product graphs.

We also consider the situation when two individuals are connected if their preferences are not opposite. This leads to a variant of the standard dot product graph model by taking the threshold t to be zero. We prove in this case that the diversity problem is polynomial-time solvable for any fixed d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the Web. Social Networks 25, 211–230 (2003)

    Article  Google Scholar 

  2. Arora, S., Steurer, D., Wigderson, A.: Towards a Study of Low-Complexity Graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 119–131. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barvinok, A.: A Course in Convexity. American Mathematical Society (2003)

    Google Scholar 

  5. Breiger, R.L.: The Duality of Persons and Groups. Social Forces 53, 181–190 (1974)

    Google Scholar 

  6. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing Unraveling in Social Networks: The Anchored k-Core Problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 440–451. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Caldarelli, G., Capocci, A., de Los Rios, P., Muñoz, M.A.: Scale-Free Networks from Varying Vertex Intrinsic Fitness. Phys. Rev. Lett. 89, 258702 (2002)

    Article  Google Scholar 

  8. Diestel, R.: Graph Theory. Springer (2005)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fiduccia, C.M., Scheinerman, E.R., Trenk, A., Zito, J.S.: Dot product representations of graphs. Discrete Mathematics 181, 113–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comp. Sci. 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gray, L.J., Wilson, D.G.: Nonnegative factorization of positive semidefinite nonnegative matrices. Linear Algebra and its Applications 31, 119–127 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent Space Approaches to Social Network Analysis. J. Am. Stat. Assoc. 97, 1090–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J.E., Karp, R.M.: An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, R.J., Lovász, L., Müller, T., Scheinerman, E.R.: Dot product representations of planar graphs. Electr. J. Comb. 18 (2011)

    Google Scholar 

  17. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete and Computational Geometry 47, 548–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karp, R.M.: Reducibility among Combinatorial Problems, Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  19. Kim, M., Leskovec, J.: Multiplicative Attribute Graph Model of Real-World Networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 62–73. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Kotlov, A., Lovász, L., Vempala, S.: The Colin de Verdiére number and sphere representations of a graph. Combinatorica 17, 483–521 (1997)

    Article  MathSciNet  Google Scholar 

  21. Liben-Nowell, D., Kleinberg, J.: The Link Prediction Problem for Social Networks. In: Proc. CIKM 2003, pp. 556–559 (2003)

    Google Scholar 

  22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Rev. Sociology 27, 415–444 (2001)

    Article  Google Scholar 

  23. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nickel, C.M.L.: Random Dot Product Graphs: A Model for Social Networks. PhD dissertation, Johns Hopkins University (2007)

    Google Scholar 

  25. Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent Semantic Indexing: A Probabilistic Analysis. J. Comput. Syst. Sci. 61, 217–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. de, D.J., Price, S.: A general theory of bibliometric and other cumulative advantage processes. J. American Society for Information Science 27, 292–306 (1976)

    Article  Google Scholar 

  27. Reiterman, J., Rödl, V., Šinǎjová, E.: Embeddings of graphs in Euclidean spaces. Discrete and Computational Geometery 4, 349–364 (1989)

    Article  MATH  Google Scholar 

  28. Reiterman, J., Rödl, V., Šinǎjová, E.: Geometrical embeddings of graphs. Discrete Mathematics 74, 291–319 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reiterman, J., Rödl, V., Šinǎjová, E.: On embedding of graphs into Euclidean spaces of small dimension. J. Combin. Theory B 56, 1–8 (1992)

    Article  MATH  Google Scholar 

  30. Scheinerman, E.R., Tucker, K.: Modeling graphs using dot product representations. Computational Statistics 25, 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simon, H.A.: On a class of skew distribution functions. Biom. 42, 425–440 (1955)

    MATH  Google Scholar 

  32. Snijders, T.A.B.: Statistical Models for Social Networks. Annual Rev. Sociology 37, 131–153 (2011)

    Article  Google Scholar 

  33. Watts, D.J., Dodds, P.S., Newman, M.E.J.: Identity and Search in Social Networks. Science 296, 1302–1305 (2002)

    Article  Google Scholar 

  34. Young, S.J., Scheinerman, E.R.: Random dot product graph models for social networks. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 138–149. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Young, S.J., Scheinerman, E.R.: Directed random dot product graphs. Internet Mathematics 5, 91–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, M., Paulusma, D., van Leeuwen, E.J. (2013). Algorithms to Measure Diversity and Clustering in Social Networks through Dot Product Graphs. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics