[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Distributed Kinodynamic Collision Avoidance System under ROS

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

  • 4235 Accesses

Abstract

This paper focuses on decentralized coordination for small or medium groups of heterogeneous mobile robots with relatively low computational resources. Specifically, we consider coordinated obstacle avoidance techniques for mobile platforms performing high level tasks, such as patrolling or exploration. In more details, we propose the use of a greedy kinodynamic collision avoidance approach for the single robots and the use of the the Max-sum algorithm for multi-robot coordination. The system implementation and its testing are based on the popular robot middleware ROS and the gazebo simulation environment. Obtained results show that our distributed collision avoidance approach is able to achieve safe navigation in real-time with a very low overhead in terms of computation and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000), doi:10.1109/18.825794

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekris, K.E., Tsianos, K., Kavraki, L.E.: Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications 14(3) (2009)

    Google Scholar 

  3. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation 2008, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  4. Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: IEEE International Conference on Robotics and Automation 1999, vol. 1, pp. 341–346. IEEE (1999)

    Google Scholar 

  5. Bruce, J., Veloso, M.: Safe multi-robot navigation within dynamics constraints. In: Proceedings of the IEEE, Special Issue on Multi-Robot Systems (2006)

    Google Scholar 

  6. Chan, N., Kuffner, J., Zucker, M.: Improved motion planning speed and safety using regions of inevitable collision. In: 17th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, RoManSy 2008 (2008)

    Google Scholar 

  7. Clark, C., Rock, S.M., Latombe, J.-C.: Motion planning for multiple mobile robot systems using dynamic networks. In: IEEE Int. Conference on Robotics and Automation, pp. 4222–4227 (2003)

    Google Scholar 

  8. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760–772 (1998)

    Article  Google Scholar 

  9. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997)

    Article  Google Scholar 

  10. Fraichard, T., Asama, H.: Inevitable collision states. a step towards safer robots? In: Intelligent Robots and Systems 2003, vol. 1, pp. 388–393 (2003), doi:10.1109/IROS.2003.1250659

    Google Scholar 

  11. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs (2001)

    Google Scholar 

  12. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968), doi:10.1109/TSSC.1968.300136

    Article  Google Scholar 

  13. Kalisiak, M., van de Panne, M.: Faster motion planning using learned local viability models. In: ICRA 2007, pp. 2700–2705 (2007)

    Google Scholar 

  14. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (1998)

    Article  MathSciNet  Google Scholar 

  15. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning (1999)

    Google Scholar 

  16. Van Den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Robotics Research, 3–19 (2011)

    Google Scholar 

  17. Wikman, T.S., Branicky, M.S., Newman, W.S.: Reflexive collision avoidance: A generalized approach. In: ICRA (3), pp. 31–36 (1993)

    Google Scholar 

  18. Yang, Y., Brock, O.: Elastic roadmaps–motion generation for autonomous mobile manipulation. Auton. Robots 28, 113–130 (2010), doi: http://dx.doi.org/10.1007/s10514-009-9151-x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoló Boscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boscolo, N., De Battisti, R., Munaro, M., Farinelli, A., Pagello, E. (2013). A Distributed Kinodynamic Collision Avoidance System under ROS. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics