Abstract
In this paper we introduce the facereclib, the first software library that allows to compare a variety of face recognition algorithms on most of the known facial image databases and that permits rapid prototyping of novel ideas and testing of meta-parameters of face recognition algorithms. The facereclib is built on the open source signal processing and machine learning library Bob. It uses well-specified face recognition protocols to ensure that results are comparable and reproducible. We show that the face recognition algorithms implemented in Bob as well as third party face recognition libraries can be used to run face recognition experiments within the framework of the facereclib. As a proof of concept, we execute four different state-of-the-art face recognition algorithms: local Gabor binary pattern histogram sequences (LGBPHS), Gabor graph comparisons with a Gabor phase based similarity measure, inter-session variability modeling (ISV) of DCT block features, and the linear discriminant analysis on two different color channels (LDA-IR) on two different databases: The Good, The Bad, and The Ugly, and the BANCA database, in all cases using their fixed protocols. The results show that there is not one face recognition algorithm that outperforms all others, but rather that the results are strongly dependent on the employed database.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Phillips, P., Rauss, P., Der, S.: FERET (face recognition technology) recognition algorithm development and test results. Technical report, Army Research Lab (1996)
Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Transactions on Systems, Man, and Cybernetics 38, 149–161 (2008)
AT&T Laboratories Cambridge: AT&T database of faces (2004), http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts, Amherst (2007)
Phillips, P.J., Beveridge, J.R., Draper, B.A., Givens, G.H., O’Toole, A.J., Bolme, D.S., Dunlop, J.P., Lui, Y.M., Sahibzada, H., Weimer, S.: An introduction to the good, the bad, & the ugly face recognition challenge problem. In: Ninth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 346–353 (2011)
Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Worek, W.: Preliminary face recognition grand challenge results. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, pp. 15–24 (2006)
Messer, K., Matas, J., Kittler, J., Luettin, J., Maître, G.: XM2VTSDB: the extended M2VTS database. In: Proceedings of the Second International Conference on Audio- and Video-Based Biometric Person Authentication (1999)
McCool, C., Marcel, S., Hadid, A., Pietikainen, M., Matejka, P., Cernocky, J., Poh, N., Kittler, J., Larcher, A., Levy, C., Matrouf, D., Bonastre, J.F., Tresadern, P., Cootes, T.: Bi-modal person recognition on a mobile phone: using mobile phone data. In: IEEE ICME Workshop on Hot Topics in Mobile Multimedia (2012)
Tan, X., Chen, S., Zhang, Z.: Face recognition from a single image per person: A survey. Pattern Recognition 39, 1725–1745 (2006)
Serrano, Á., de Diego, I.M., Conde, C., Cabello, E.: Recent advances in face biometrics with Gabor wavelets: A review. Pattern Recognition Letters 31, 372–381 (2010)
Huang, D., Member, S., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: A survey. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews 41, 765–781 (2011)
Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. Journal of Information Processing Systems 5, 41–68 (2009)
Shen, L., Bai, L.: A review on Gabor wavelets for face recognition. Pattern Analysis and Applications 9, 273–292 (2006)
Beveridge, R., Bolme, D., Teixeira, M., Draper, B.: The CSU face identification evaluation system user’s guide version 5.0. Technical report, Colorado State University (2003)
Blackburn, D., Bone, M., Phillips, P.: Face recognition vendor test 2000: evaluation report. Technical report, National Institute of Standards and Technology (2001)
Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, M.: Face recognition vendor test 2002: evaluation report. Technical report, National Institute of Standards and Technology (2003)
Phillips, P., Scruggs, T., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. Technical report, National Institute of Standards and Technology (2007)
Anjos, A., Shafey, L.E., Wallace, R., Günther, M., McCool, C., Marcel, S.: Bob: a free signal processing and machine learning toolbox for researchers. In: 20th ACM Conference on Multimedia Systems. ACM Press (2012)
Beveridge, R., Bolme, D.S.: CSU Face Recognition Resources (2011), http://www.cs.colostate.edu/facerec/algorithms/baselines2011.php
Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: IEEE International Conference on Computer Vision, vol. 1, pp. 786–791 (2005)
Wiskott, L., Fellous, J.M., Krüger, N., Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)
Günther, M., Haufe, D., Würtz, R.P.: Face Recognition with Disparity Corrected Gabor Phase Differences. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 411–418. Springer, Heidelberg (2012)
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Inter-session variability modelling and joint factor analysis for face authentication. In: International Joint Conference on Biometrics (2011)
Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.P.: The BANCA Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19, 1635–1650 (2010)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models. IEEE Transactions on Information Forensics and Security (2012)
Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10, 19–41 (2000)
Grgic, M., Delac, K., Grgic, S.: SCface - surveillance cameras face database. Multimedia Tools and Applications 51, 863–879 (2011)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Moghaddam, B., Wahid, W., Pentland, A.: Beyond eigenfaces: Probabilistic matching for face recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 30–35 (1998)
Günther, M., Würtz, R.P.: Face detection and recognition using maximum likelihood classifiers on Gabor graphs. International Journal of Pattern Recognition and Artificial Intelligence 23, 433–461 (2009)
Prince, S.J.D.: Probabilistic linear discriminant analysis for inferences about identity. In: Proceedings of the International Conference on Computer Vision (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Günther, M., Wallace, R., Marcel, S. (2012). An Open Source Framework for Standardized Comparisons of Face Recognition Algorithms. In: Fusiello, A., Murino, V., Cucchiara, R. (eds) Computer Vision – ECCV 2012. Workshops and Demonstrations. ECCV 2012. Lecture Notes in Computer Science, vol 7585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33885-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-33885-4_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33884-7
Online ISBN: 978-3-642-33885-4
eBook Packages: Computer ScienceComputer Science (R0)