[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Artificial Immune Network Approach with Beta Differential Operator Applied to Optimization of Heat Exchangers

  • Conference paper
Artificial Immune Systems (ICARIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7597))

Included in the following conference series:

  • 874 Accesses

Abstract

The artificial immune systems combine these strengths have been gaining significant attention due to its powerful adaptive learning and memory capabilities. A meta-heuristic approach called opt-aiNET (artificial immune network for optimization) algorithm, a well-known immune inspired algorithm for function optimization, is adopted in this paper. The opt-aiNET algorithm evolves a population, which consists of a network of antibodies (considered as candidate solutions to the function being optimized). These undergo a process of evaluation against the objective function, clonal expansion, mutation, selection and interaction between themselves. In this paper, a proposed modified opt-aiNET approach using based on mutation operator inspired in differential evolution and beta probability distribution (opt-BDaiNET) is described and validated to three benchmark functions and to shell and tube heat exchanger optimization based on the minimization from economic view point. Simulations are conducted to verify the efficiency of proposed opt-BDaiNET algorithm and the results obtained for two case studies are compared with those obtained by using genetic algorithm and particle swarm optimization. In this application domain, the opt-aiNET and opt-BDaiNET were found to outperform the previously best-known solutions available in the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)

    MATH  Google Scholar 

  2. Zheng, J., Chen, Y., Zhang, W.: A Survey of Artificial Immune Applications. Artificial Intelligence Review 34, 19–34 (2010)

    Article  Google Scholar 

  3. Campelo, F., Guimarães, F.G., Igarashi, H.: Overview of Artificial Immune Systems for Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 937–951. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. De Castro, L.N., Von Zuben, F.J.: AiNet: An Evolutionary Immune Network for Data Clustering. In: Proceedings of the 6th Brazilian Symposium on Neural Networks, Rio de Janeiro, RJ, Brazil, pp. 231–259 (2000)

    Google Scholar 

  5. De Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, HA, USA, pp. 699–704 (2002)

    Google Scholar 

  6. Xu, Q., Wang, L., Si, J.: Predication Based Immune Network for Multimodal Function Optimization. Engineering Applications of Artificial Intelligence 23, 495–504 (2010)

    Article  Google Scholar 

  7. Köster, M., Graul, A., Klene, G., Convey, H.: A New Paradigm of Optimisation by Using Artificial Immune Reactions. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 287–292. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Coelho, G.P., Von Zuben, F.J.: omni-aiNet: An Immune-Inspired Approach for Omni Optimization. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS (LNAI), vol. 4163, pp. 294–308. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Storn, R., Price, K.: Differential Evolution ( A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ali, M.M.: Synthesis of the β-distribution as an Aid to Stochastic Global Optimization. Computational Statistics & Data Analysis 52, 133–149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Patel, V.K., Rao, R.V.: Design Optimization of Shell-and-Tube Heat Exchanger Using Particle Swarm Optimization Technique. Applied Thermal Engineering 30, 1417–1425 (2010)

    Article  Google Scholar 

  12. Campelo, F., Guimarães, F.G., Igarashi, H., Ramírez, J.A., Noguchi, S.: A Modified Immune Network Algorithm for Multimodal Electromagnetic Problems. IEEE Transactions on Magnetics 42, 1111–1114 (2006)

    Article  Google Scholar 

  13. Timmis, J., Edmonds, C.: A Comment on Opt-AiNET: An Immune Network Algorithm for Optimisation. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 308–317. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Selbas, R., Kizilkan, O., Reppich, M.: A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms from Economic Point of View. Chemical Engineering and Processing 45, 268–275 (2006)

    Article  Google Scholar 

  15. Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat Exchanger Design Based on Economic Optimization. Applied Thermal Engineering 28, 1151–1159 (2008)

    Article  Google Scholar 

  16. Taal, M., Bulatov, I., Klemes, J., Stehlik, P.: Cost Estimation and Energy Price Forecast for Economic Evaluation of Retrofit Projects. Applied Thermal Engineering 23, 1819–1835 (2003)

    Article  Google Scholar 

  17. Kern, D.Q.: Process Heat Transfer. McGraw-Hill, New York (1950)

    Google Scholar 

  18. Peters, M.S., Timmerhaus, K.D.: Plant Design and Economics for Chemical Engineers. McGraw-Hill Book Company, New York (1991)

    Google Scholar 

  19. Sinnott, R.K., Coulson, J.M., Richardson, J.F.: Chemical Engineering Design, vol. 6. Butterworth-Heinemann, Boston (1996)

    Google Scholar 

  20. Shang, Y.W., Qiu, Y.H.: A Note on the Extended Rosenbrock Function. Evolutionary Computation 14, 119–126 (2006)

    Article  Google Scholar 

  21. Digalakis, J.G., Margaritis, K.G.: An Experimental Study of Benchmarking Functions for Genetic Algorithms. International Journal of Computer Mathematics 79, 403–416 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mariani, V.C., dos Santos Coelho, L., Duck, A., Guerra, F.A., Rao, R.V. (2012). Artificial Immune Network Approach with Beta Differential Operator Applied to Optimization of Heat Exchangers. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33757-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33756-7

  • Online ISBN: 978-3-642-33757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics