Abstract
This paper presents a novel approach for multi-target tracking using an ensemble framework that optimally chooses target tracking results from that of independent trackers and a detector at each time step. The ensemble model is designed to select the best candidate scored by a function integrating detection confidence, appearance affinity, and smoothness constraints imposed using geometry and motion information. Parameters of our association score function are discriminatively trained with a max-margin framework. Optimal selection is achieved through a hierarchical data association step that progressively associates candidates to targets. By introducing a second target classifier and using the ranking score from the pre-trained classifier as the detection confidence measure, we add additional robustness against unreliable detections. The proposed algorithm robustly tracks a large number of moving objects in complex scenes with occlusions. We evaluate our approach on a variety of public datasets and show promising improvements over state-of-the-art methods.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: A review. Neurocomputing 74, 3823–3831 (2011)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. PAMI 32, 1627–1645 (2010)
Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: CVPR (2009)
Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: Training object detectors with crawled data and crowds. In: CVPR (2011)
Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Choi, W., Savarese, S.: Multiple Target Tracking in World Coordinate with Single, Minimally Calibrated Camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 553–567. Springer, Heidelberg (2010)
Stalder, S., Grabner, H., Gool, L.V.: Cascaded Confidence Filtering for Improved Tracking-by-Detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 369–382. Springer, Heidelberg (2010)
Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. PAMI 33, 1820–1833 (2011)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619–1632 (2011)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: CVPR (2011)
Kuo, C.H., Nevatia, R.: How does person identity recognition help multi-person tracking? In: CVPR (2011)
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)
Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)
Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR (2011)
Yao, A., Uebersax, D., Gall, J., Gool, L.V.: Tracking People in Broadcast Sports. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 151–161. Springer, Heidelberg (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV (2011)
Wu, B., Nevatia, R.: Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. IJCV 82, 184–204 (2007)
Leibe, B., Schindler, K., Gool, L.V.: Coupled detection and trajectory estimation for multi-object tracking. In: ICCV (2007)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. PAMI 28, 2037–2041 (2006)
Song, B., Jeng, T.Y., Staudt, E., Roy-Chowdhury, A.K.: A Stochastic Graph Evolution Framework for Robust Multi-target Tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 605–619. Springer, Heidelberg (2010)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33, 500–513 (2011)
Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for SVM. In: ICML (2007)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Image Video Processing 1, 1–10 (2008)
Okuma, K., Taleghani, A., Freitas, N.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yan, X., Wu, X., Kakadiaris, I.A., Shah, S.K. (2012). To Track or To Detect? An Ensemble Framework for Optimal Selection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33715-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-33715-4_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33714-7
Online ISBN: 978-3-642-33715-4
eBook Packages: Computer ScienceComputer Science (R0)