[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Landmark-Based Primal-Dual Approach for Discontinuity Preserving Registration

  • Conference paper
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7601))

Abstract

Discontinuous motion is quite common in the medical field as for example in the case of breathing induced organ motion. Registration methods that are able to preserve discontinuities are therefore of special interest. To achieve this goal we developed in our previous work a framework that combines motion segmentation and registration. To avoid unreliable motion fields the incorporation of landmark correspondences can be a remedy. We therefore describe in this paper how we integrate the landmarks in our variational approach and how to solve the minimisation problem with a primal-dual algorithm. Qualitative and quantitative results are shown for real MR images of breathing induced liver motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amiaz, T., Kiryati, N.: Piecewise-Smooth Dense Optical Flow via Level Sets. International Journal of Computer Vision 68(2), 111–124 (2006)

    Article  Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Brox, T., Malik, J.: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3), 500–513 (2011)

    Article  Google Scholar 

  4. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models. Siam Journal on Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demirovic, D., Serifovic, A., Cattin, P.C.: An anisotropic diffusion regularized demons for improved registration of sliding organs. In: 18th International Electrotechnical and Computer Science Conference, ERK (2009)

    Google Scholar 

  7. Haber, E., Heldmann, S., Modersitzki, J.: A Scale-Space Approach to Landmark Constrained Image Registration. Scale Space and Variational Methods in Computer Vision 5567, 612–623 (2009)

    Article  Google Scholar 

  8. Johnson, H., Christensen, G.: Consistent Landmark and Intensity-Based Image Registration. IEEE Transactions on Medical Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  9. Kiriyanthan, S., Fundana, K., Cattin, P.C.: Discontinuity Preserving Registration of Abdominal MR Images with Apparent Sliding Organ Motion. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 231–239. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: Discontinuity Preserving Registration through Motion Segmentation: A Primal-Dual Approach (submitted)

    Google Scholar 

  11. Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: A Primal-Dual Approach for Discontinuity Preserving Registration. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 350–353 (May 2012)

    Google Scholar 

  12. Kybic, J., Unser, M.: Fast Parametric Elastic Image Registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  13. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational-Problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paquin, D., Levy, D., Xing, L.: Hybrid Multiscale Landmark and Deformable Image Registration. Mathematical Biosciences and Engineering 4(4), 711–737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A Duality Based Algorithm for TV-L 1-Optical-Flow Image Registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H.: Slipping Objects in Image Registration: Improved Motion Field Estimation with Direction-Dependent Regularization. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 755–762. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. J. of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  19. Yu, G., Morel, J.M.: ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Processing On Line (2011), doi: http://dx.doi.org/10.5201/ipol.2011.my-asift

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C. (2012). A Landmark-Based Primal-Dual Approach for Discontinuity Preserving Registration. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2012. Lecture Notes in Computer Science, vol 7601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33612-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33612-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33611-9

  • Online ISBN: 978-3-642-33612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics