Abstract
This paper introduces a new method for anisotropic surface meshing. From an input polygonal mesh and a specified number of vertices, the method generates a curvature-adapted mesh. The main idea consists in transforming the 3d anisotropic space into a higher dimensional isotropic space (typically 6d or larger). In this high dimensional space, the mesh is optimized by computing a Centroidal Voronoi Tessellation (CVT), i.e. the minimizer of a C 2 objective function that depends on the coordinates at the vertices (quantization noise power). Optimizing this objective function requires to compute the intersection between the (higher dimensional) Voronoi cells and the surface (Restricted Voronoi Diagram). The method overcomes the d-factorial cost of computing a Voronoi diagram of dimension d by directly computing the restricted Voronoi cells with a new algorithm that can be easily parallelized (Vorpaline: Voronoi Parallel Linear Enumeration). The method is demonstrated with several examples comprising CAD and scanned meshes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CGAL, http://www.cgal.org
Alauzet, F., Loseille, A.: High-order sonic boom modeling based on adaptive methods. J. Comput. Physics 229(3), 561–593 (2010)
Alliez, P., Colin de Verdière, E., Devillers, O., Isenburg, M.: Centroidal Voronoi diagrams for isotropic remeshing. Graphical Models 67(3), 204–231 (2003)
Bradford Barber, C.: David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)
Boissonnat, J.-D., Wormser, C., Yvinec, M.: Anisotropic Diagrams: Labelle Shewchuk approach revisited. Theo. Comp. Science (408), 163–173 (2008)
Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press (1998)
Borouchaki, H., George, P.-L.: Delaunay Triangulation and Meshing: Application to Finite Elements. Hermès (1998)
Borouchaki, H., George, P.-L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. part 1: Algorithms. Finite Elements in Analysis and Design 25, 61–83 (1997)
Borouchaki, H., George, P.-L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. part 2: Application examples. Finite Elements in Analysis and Design 25, 85–109 (1997)
Canas, G.D., Gortler, S.J.: Surface remeshing in arbitrary codimensions. Vis. Comput. 22(9), 885–895 (2006)
Canas, G.D., Gortler, S.J.: Shape operator metric for surface normal approximation. In: International Meshing Roundtable Conference Proceedings, Salt Lake City (November 2009)
Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical delaunay meshing algorithm for alarge class of domains. In: 16th International Meshing Roundtable Conf. Proc., pp. 477–494 (2007)
Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.-M.: Adaptive multiresolution analysis based on anisotropic triangulations. Math. Comput. 81(278) (2012)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Transactions on Graphics 23, 905–914 (2004)
d’Azevedo, E.: Optimal triangular mesh generation by coordinate transformation. Technical report, University of Waterloo (1989)
Dobrzynski, C., Frey, P.J.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable, pp. 177–194. États-Unis (2008)
Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis 44(1), 102–119 (2006)
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999)
Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi tessellations. Applied Mathematics and Computation 133(2-3), 591–607 (2002)
Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tesselations for surfaces. SIAM Journal on Scientific Computing 24(5), 1488–1506 (2003)
Du, Q., Wang, D.: Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. International Journal for Numerical Methods in Engineering 56, 1355–1373 (2003)
Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM Journal on Scientific Computing 26(3), 737–761 (2005)
Karypis, G., Kumar, V.: Metis - unstructured graph partitioning and sparse matrix ordering system, version 2.0. Technical report (1995)
Kleb, W.: Nasa technical brief - advanced computational fluid dynamics and mesh generation (2009), http://www.techbriefs.com/component/content/article/5075
Kovacs, D., Myles, A., Zorin, D.: Anisotropic quadrangulation. In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, SPM 2010, pp. 137–146. ACM, New York (2010)
Lai, Y.K., Zhou, Q.Y., Hu, S.M., Wallner, J., Pottmann, H.: Robust feature classification and editing. IEEE Trans. Visualization and Computer Graphics (2007)
Labelle, F., Shewchuk, J.-R.: Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: SCG 2003: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200 (2003)
Leibon, G., Letscher, D.: Delaunay triangulations and voronoi diagrams for riemannian manifolds. In: SCG Conf. Proc., pp. 341–349. ACM
Lévy, B., Liu, Y.: Lp Centroidal Voronoi Tesselation and its applications. ACM Transactions on Graphics 29(4) (2010)
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Transactions on Graphics 28(4), 1–17 (2009)
Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)
Loseille, A., Alauzet, F.: Continuous mesh framework part i: Well-posed interpolation error. SIAM J. Numerical Analysis 49(1), 38–60 (2011)
Loseille, A., Alauzet, F.: Continuous mesh framework part ii: Validations and applications. SIAM J. Numerical Analysis 49(1), 61–86 (2011)
Mirebeau, J.-M., Cohen, A.: Anisotropic smoothness classes: From finite element approximation to image models. Journal of Mathematical Imaging and Vision 38(1), 52–69 (2010)
Mirebeau, J.-M., Cohen, A.: Greedy bisection generates optimally adapted triangulations. Math. Comput. 81(278) (2012)
Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor searching. In: CGC Workshop on Computational Geometry, pp. 33–40 (1997)
Nash, J.F.: The imbedding problem for riemannian manifolds. Annals of Mathematics 63, 20–63 (1956)
Peyré, G., Cohen, L.: Surface segmentation using geodesic centroidal tesselation. In: 2nd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT 2004), pp. 995–1002 (2004)
Shewchuk, J.R.: What is a good linear finite element? - interpolation, conditioning, anisotropy, and quality measures. Technical report. In: Proc. of the 11th International Meshing Roundtable (2002)
Sutherland, I., Hodgman, G.W.: Reentrant polygon clipping. Communications of the ACM 17, 32–42 (1974)
Turk, G.: Generating random points in triangles. In: Graphics Gems, pp. 24–28. Academic Press Professional, Inc, San Diego (1990)
Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics 14(2), 369–381 (2008)
Yan, D.-M., Wang, W., Lévy, B., Liu, Y.: Efficient computation of 3d clipped voronoi diagram. In: GMP Conf. Proc., pp. 269–282 (2010)
Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Computer Graphics Forum 28(5), 1445–1454 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lévy, B., Bonneel, N. (2013). Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration. In: Jiao, X., Weill, JC. (eds) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-33573-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33572-3
Online ISBN: 978-3-642-33573-0
eBook Packages: EngineeringEngineering (R0)