[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Temporal Problems Using SMT: Strong Controllability

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Many applications, such as scheduling and temporal planning, require the solution of Temporal Problems (TP’s) representing constraints over the timing of activities. A TP with uncertainty (TPU) is characterized by activities with uncontrollable duration. Depending on the Boolean structure of the constraints, we have simple (STPU), constraint satisfaction (TCSPU), and disjunctive (DTPU) temporal problems with uncertainty.

In this work we tackle the problem of strong controllability, i.e. finding an assignment to all the controllable time points, such that the constraints are fulfilled under any possible assignment of uncontrollable time points. We work in the framework of Satisfiability Modulo Theory (SMT), where uncertainty is expressed by means of universal quantifiers. We obtain the first practical and comprehensive solution for strong controllability: the use of quantifier elimination techniques leads to quantifier-free encodings, which are in turn solved with efficient SMT solvers.

We provide a detailed experimental evaluation of our approach over a large set of benchmarks. The results clearly demonstrate that the proposed approach is feasible, and outperforms the best state-of-the-art competitors, when available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. Journal of Experimental Theoretical Artificial Intelligence 11, 23–45 (1999)

    Article  MATH  Google Scholar 

  3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)

    Google Scholar 

  4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Cimatti, A., Griggio, A., Sebastiani, R., Schaafsma, B.: The MathSAT5 SMT solver (2011), http://mathsat.fbk.eu

  6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Dutertre, B., de Moura, L.: The Yices SMT solver (2006), Tool paper at http://yices.csl.sri.com/tool-paper.pdf

  8. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Niemelä, I.: Integrating Answer Set Programming and Satisfiability Modulo Theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, p. 3. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in symbolic execution of microcode. In: Bloem, R., Sharygina, N. (eds.) Formal Methods in Computer-Aided Design - FMCAD, pp. 121–128. IEEE (2010)

    Google Scholar 

  11. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network and Distributed System Security Symposium - NDSS. The Internet Society (2008)

    Google Scholar 

  12. Kleene, S.: Mathematical Logic. J. Wiley & Sons (1967)

    Google Scholar 

  13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Design Automation Conference - DAC, pp. 530–535. ACM Press, New York (2001)

    Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons (1998)

    Google Scholar 

  15. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Computer Journal 36, 450–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monniaux, D.: A Quantifier Elimination Algorithm for Linear Real Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 243–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of the ACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  18. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive temporal reasoning problems. Artificial Intelligence 151, 43–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong Controllability of Disjunctive Temporal Problems with Uncertainty. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 856–863. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Armando, A., Castellini, C., Giunchiglia, E.: SAT-Based Procedures for Temporal Reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. de la Tour, T.B.: Minimizing the Number of Clauses by Renaming. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 558–572. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  22. Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths by leveraging low treewidth. Journal of Artificial Intelligence Research (JAIR) 43, 353–388 (2012)

    MATH  Google Scholar 

  23. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic controllability of temporal problems with disjunctions and uncertainty. In: Workshop on Constraint Satisfaction Techniques for Planning & Scheduling, pp. 50–59 (2010)

    Google Scholar 

  24. Cimatti, A., Micheli, A., Roveri, M.: Solving Temporal Problems using SMT: Weak Controllability. In: Hoffmann, J., Selman, B. (eds.) American Association for Artificial Intelligence - AAAI. AAAI Press (2012)

    Google Scholar 

  25. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: Nebel, B. (ed.) International Joint Conference on Artificial Intelligence - IJCAI, pp. 494–502. Morgan Kaufmann (2001)

    Google Scholar 

  26. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 Years of SMT-COMP. Journal of Automated Reasoning (to appear, 2012)

    Google Scholar 

  27. Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cimatti, A., Micheli, A., Roveri, M. (2012). Solving Temporal Problems Using SMT: Strong Controllability. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics