[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting Ramp Events with a Stream-Based HMM Framework

  • Conference paper
Discovery Science (DS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7569))

Included in the following conference series:

Abstract

The motivation for this work is the study and prediction of wind ramp events occurring in a large-scale wind farm located in the US Midwest. In this paper we introduce the SHRED framework, a stream-based model that continuously learns a discrete HMM model from wind power and wind speed measurements. We use a supervised learning algorithm to learn HMM parameters from discretized data, where ramp events are HMM states and discretized wind speed data are HMM observations. The discretization of the historical data is obtained by running the SAX algorithm over the first order variations in the original signal. SHRED updates the HMM using the most recent historical data and includes a forgetting mechanism to model natural time dependence in wind patterns. To forecast ramp events we use recent wind speed forecasts and the Viterbi algorithm, that incrementally finds the most probable ramp event to occur.

We compare SHRED framework against Persistence baseline in predicting ramp events occurring in short-time horizons, ranging from 30 minutes to 90 minutes. SHRED consistently exhibits more accurate and cost-effective results than the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradford, K., Carpenter, R., Shaw, B.: Forecasting southern plains wind ramp events using the wrf model at 3-km. In: AMS Student Conference (2010)

    Google Scholar 

  2. Ferreira, C., Gama, J., Matias, L., Botterud, A., Wang, J.: A survey on wind power ramp forecasting. Tech. Rep. ANL/DIS 10-13, Argonne National Laboratory (2010)

    Google Scholar 

  3. Focken, U., Lange, M.: Wind power forecasting pilot project in alberta. Energy & meteo systems, Oldenburg, Germany, GmbH (2008)

    Google Scholar 

  4. Freedman, J., Markus, M., Penc, R.: Analysis of west texas wind plant ramp-up and ramp-down events. In: AWS Truewind, LLC, Albany, NY (2008)

    Google Scholar 

  5. Greaves, B., Collins, J., Parkes, J., Tindal, A.: Temporal forecast uncertainty for ramp events. Wind Engineering 33(11), 309–319 (2009)

    Article  Google Scholar 

  6. Hanssen, A., Kuipers, W.: On the relationship between the frequency of rain and various meteorological parameters. Mededelingen van de Verhandlungen 81 (1965)

    Google Scholar 

  7. Kamath, C.: Understanding wind ramp events through analysis of historical data. In: IEEE PES Transmission and Distribution Conference and Expo., New Orleans, LA, United States (2010)

    Google Scholar 

  8. Kusiak, A., Zheng, H.: Prediction of wind farm power ramp rates: A data-mining approach. Journal of Solar Energy Engineering 131 (2009)

    Google Scholar 

  9. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA (2003)

    Google Scholar 

  10. Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G.: Wind power forecasting: State-of-the-art 2009. Tech. Rep. ANL/DIS 10-1, Argonne National Laboratory (2009)

    Google Scholar 

  11. Potter, C.W., Grimit, E., Nijssen, B.: Potential benefits of a dedicated probabilistic rapid ramp event forecast tool. IEEE (2009)

    Google Scholar 

  12. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2) (1989)

    Google Scholar 

  13. Srinivasan, A.: Note on the location of optimal classifiers in n-dimensional roc space. Tech. Rep. PRG-TR-2-99, Oxford University (1999)

    Google Scholar 

  14. Zack, J., Young, S., Cote, M., Nocera, J.: Development and testing of an innovative short-term large wind ramp forecasting system. In: Wind Power Conference & Exhibition, Dallas, Texas (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferreira, C.A., Gama, J., Santos Costa, V., Miranda, V., Botterud, A. (2012). Predicting Ramp Events with a Stream-Based HMM Framework. In: Ganascia, JG., Lenca, P., Petit, JM. (eds) Discovery Science. DS 2012. Lecture Notes in Computer Science(), vol 7569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33492-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33492-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33491-7

  • Online ISBN: 978-3-642-33492-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics