[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Image Annotation Feedback Model Based on Internet-Search

  • Conference paper
Web Information Systems and Mining (WISM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7529))

Included in the following conference series:

Abstract

We propose an Internet-search-based automatic image annotation feedback model, combining content-based and web-based image annotation, to solve the relevance assumption between the image and text and the limited volume of the database. In this model, we extract candidate labels from search results using web-based texts associated with the image, and then verify the final results by using Internet search results of candidate labels with content-based features. Experimental results show that this method can annotate the large-scale database with high accuracy, and achieve a 5.2% improvement on the basis of web-based automatic image annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Russell, B.C., Torralba, A., Murphy, K.P., et al.: Labelme: A database and web-based tool for image annotation. IJCV 77(1-3), 157–173 (2008)

    Article  Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2008 (VOC 2008) Results (2008)

    Google Scholar 

  4. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, pp. 119–126 (2003)

    Google Scholar 

  5. Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: NIPS (2004)

    Google Scholar 

  6. Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: CVPR, pp. 1002–1009 (2004)

    Google Scholar 

  7. Jin, R., Chai, J.Y., Si, L.: Effective automatic image annotation via a coherent language model and active learning. In: ACM SIGMM, pp. 892–899 (2004)

    Google Scholar 

  8. Tufiş, D., ŞtefĂnescu, D.: Experiments with a differential semantics annotation for WordNet 3.0. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, ACL-HLT 2011, Portland, Oregon, USA, pp. 19–27 (2011)

    Google Scholar 

  9. Liu, J., Li, M., Liu, Q., Lu, H., Ma, S.: Image annotation via graph learning. PR 42(2), 218–228 (2009)

    MATH  Google Scholar 

  10. Tseng, V.S., Su, J.H., Wang, B.W., Lin, Y.M.: WEB Image Annotation by Fusing Visual Features and Textual Information. In: Proeeedings of the 2007 ACM Symposium on Applied Computing, pp. 1056–1060. ACM Press, New York (2007)

    Chapter  Google Scholar 

  11. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Key points. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Gadelmawla, E.S.: A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT & E International 37(7), 577–588 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J., Cao, D., Li, S., Lin, D. (2012). A Novel Image Annotation Feedback Model Based on Internet-Search. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds) Web Information Systems and Mining. WISM 2012. Lecture Notes in Computer Science, vol 7529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33469-6_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33469-6_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33468-9

  • Online ISBN: 978-3-642-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics