Abstract
We propose an Internet-search-based automatic image annotation feedback model, combining content-based and web-based image annotation, to solve the relevance assumption between the image and text and the limited volume of the database. In this model, we extract candidate labels from search results using web-based texts associated with the image, and then verify the final results by using Internet search results of candidate labels with content-based features. Experimental results show that this method can annotate the large-scale database with high accuracy, and achieve a 5.2% improvement on the basis of web-based automatic image annotation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
Russell, B.C., Torralba, A., Murphy, K.P., et al.: Labelme: A database and web-based tool for image annotation. IJCV 77(1-3), 157–173 (2008)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2008 (VOC 2008) Results (2008)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, pp. 119–126 (2003)
Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: NIPS (2004)
Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: CVPR, pp. 1002–1009 (2004)
Jin, R., Chai, J.Y., Si, L.: Effective automatic image annotation via a coherent language model and active learning. In: ACM SIGMM, pp. 892–899 (2004)
Tufiş, D., ŞtefĂnescu, D.: Experiments with a differential semantics annotation for WordNet 3.0. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, ACL-HLT 2011, Portland, Oregon, USA, pp. 19–27 (2011)
Liu, J., Li, M., Liu, Q., Lu, H., Ma, S.: Image annotation via graph learning. PR 42(2), 218–228 (2009)
Tseng, V.S., Su, J.H., Wang, B.W., Lin, Y.M.: WEB Image Annotation by Fusing Visual Features and Textual Information. In: Proeeedings of the 2007 ACM Symposium on Applied Computing, pp. 1056–1060. ACM Press, New York (2007)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Key points. International Journal of Computer Vision 60(2), 91–110 (2004)
Gadelmawla, E.S.: A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT & E International 37(7), 577–588 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, J., Cao, D., Li, S., Lin, D. (2012). A Novel Image Annotation Feedback Model Based on Internet-Search. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds) Web Information Systems and Mining. WISM 2012. Lecture Notes in Computer Science, vol 7529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33469-6_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-33469-6_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33468-9
Online ISBN: 978-3-642-33469-6
eBook Packages: Computer ScienceComputer Science (R0)