Abstract
Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in magnetic confinement fusion experiments. However, the measurements obtained from the various plasma diagnostics are typically affected by a considerable statistical uncertainty. In this work, we consider the inherent stochastic nature of the data by modeling the measurements by probability distributions in a metric space. Information geometry permits the calculation of the geodesic distances on such manifolds, which we apply to the important problem of the classification of plasma confinement regimes. We use a distance-based conformal predictor, which we first apply to a synthetic data set. Next, the method yields an excellent classification performance with measurements from an international database. The conformal predictor also returns confidence and credibility measures, which are particularly important for interpretation of pattern recognition results in stochastic fusion data.
Chapter PDF
Similar content being viewed by others
References
Amari, S., Nagaoka, H.: Methods of information geometry. Transactions of mathematical monographs, vol. 191. American Mathematical Society, New York (2000)
Burbea, J., Rao, C.R.: Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J. Multivariate Anal. 12(4), 575–596 (1982)
Fischer, R., Dinklage, A., Pasch, E.: Bayesian modelling of fusion diagnostics. Plasma Phys. Control. Fusion 45(7), 1095–1111 (2003)
Lukianitsa, A., Zhdanov, F., Zaitsev, F.: Analyses of ITER operation mode using the support vector machine technique for plasma discharge classification. Plasma Phys. Control. Fusion 50(6, article no. 065013) (2008)
McDonald, D., et al.: Recent progress on the development and analysis of the ITPA global H-mode confinement database. Nucl. Fusion 47(3), 147–174 (2007)
Meakins, A., McDonald, D., JET-EFDA Contributors: The application of classification methods in a data driven investigation of the JET L-H transition. Plasma Phys. Control. Fusion 52(7, article no. 075005) (2010)
Murari, A., Vagliasindi, G., Zedda, M., Felton, R., Sammon, C., Fortuna, L., Arena, P., JET-EFDA Contributors: Fuzzy logic and support vector machine approaches to regime identification in JET. IEEE Trans. Plasma Sci. 34(3), 1013–1020 (2006)
Murari, A., Vega, J., Mazon, D., Rattà, G.A., Svensson, J., Palazzo, S., Vagliasindi, G., Arena, P., Boulbé, C., Faugeras, B., Fortuna, L., Moreau, D., JET-EFDA Contributors: Innovative signal processing and data analysis methods on JET for control in the perspective of next-step devices. Nucl. Fusion 50(5, art. no. 055005) (2010)
Vega, J., Murari, A., Pereira, A., González, S., Pastor, I.: Accurate and reliable image classification by using conformal predictors in the TJ-II Thomson scattering. Rev. Sci. Instrum. 81(10, article no. 10E118) (2010)
Verdoolaege, G., Fischer, R., Van Oost, G., JET-EFDA Contributors: Potential of a Bayesian integrated determination of the ion effective charge via bremsstrahlung and charge exchange spectroscopy in tokamak plasmas. IEEE Trans. Plasma Sci. 38(11), 3168–3196 (2010)
Verdoolaege, G., Scheunders, P.: Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination. Int. J. Comput. Vis. 95(3), 265–286 (2011)
Verdoolaege, G., Scheunders, P.: On the geometry of multivariate generalized Gaussian models. J. Math. Imaging Vis. 43(3), 180–193 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 IFIP International Federation for Information Processing
About this paper
Cite this paper
Verdoolaege, G., Vega, J., Murari, A., Van Oost, G. (2012). Identification of Confinement Regimes in Tokamak Plasmas by Conformal Prediction on a Probabilistic Manifold. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds) Artificial Intelligence Applications and Innovations. AIAI 2012. IFIP Advances in Information and Communication Technology, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33412-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-33412-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33411-5
Online ISBN: 978-3-642-33412-2
eBook Packages: Computer ScienceComputer Science (R0)