Abstract
Terrain networks (or complex networks) is a type of relational information that is encountered in many fields. In order to properly answer questions pertaining to the comparison or to the merging of such networks, a method that takes into account the underlying structure of graphs is proposed. The effectiveness of the method is illustrated using real linguistic data networks and artificial networks, in particular.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabási, A.: Statistical mechanics of complex networks (2001)
Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Dooren, P.V.: A measure of similarity between graph vertices: Applications to synonym extraction and web searching. SIAM Rev. 46, 647–666 (2004)
Bollobas, B.: Modern Graph Theory. Springer (October 2002)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
Gaillard, B., Gaume, B., Navarro, E.: Invariants and variability of synonymy networks: Self mediated agreement by confluence. In: TextGraphs-6, ACL, pp. 15–23 (2011)
Gaume, B.: Balades Aléatoires dans les Petits Mondes Lexicaux. I3: Information Interaction Intelligence 4(2) (2004)
He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: Proc. of the 22th IEEE Int. Conf. on Data Engineering (ICDE), p. 38 (April 2006)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)
Macindoe, O., Richards, W.: Graph comparison using fine structure analysis. In: Second IEEE Int. Conf. on Social Computing, pp. 193–200 (August 2010)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th International Conference on Data Engineering 2002, pp. 117–128 (2002)
Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)
Pons, P., Latapy, M.: Computing communities in large networks using random walks (long version). Journal of Graph Algorithms and Applications (JGAA) 10(2), 191–218 (2006)
Sajous, F., Navarro, E., Gaume, B., Prévot, L., Chudy, Y.: Semi-automatic enrichment of crowdsourced synonymy networks: the wisigoth system applied to wiktionary. Language Resources and Evaluation, 1–34 (to appear)
Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
Shang, H., Zhu, K., Lin, X., Zhang, Y., Ichise, R.: Similarity search on supergraph containment. In: Proc. of the 26th IEEE Int. Conf. on Data Engineering (ICDE), pp. 637–648 (March 2010)
Stewart, G.W.: Perron-frobenius theory: a new proof of the basics. Technical report, College Park, MD, USA (1994)
Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: Proc. of the 24th IEEE Int. Conf. on Data Engineering (ICDE), pp. 963–972 (2008)
Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)
Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: Proc. of the 2005 ACM Int. Conf. on Management of Data (SIGMOD), pp. 766–777 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Navarro, E., Gaume, B., Prade, H. (2012). Comparing and Fusing Terrain Network Information. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-33362-0_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33361-3
Online ISBN: 978-3-642-33362-0
eBook Packages: Computer ScienceComputer Science (R0)