[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nested Sequent Calculi for Conditional Logics

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

Abstract

Nested sequent calculi are a useful generalization of ordinary sequent calculi, where sequents are allowed to occur within sequents. Nested sequent calculi have been profitably employed in the area of (multi)-modal logic to obtain analytic and modular proof systems for these logics. In this work, we extend the realm of nested sequents by providing nested sequent calculi for the basic conditional logic CK and some of its significant extensions. The calculi are internal (a sequent can be directly translated into a formula), cut-free and analytic. Moreover, they can be used to design (sometimes optimal) decision procedures for the respective logics, and to obtain complexity upper bounds. Our calculi are an argument in favour of nested sequent calculi for modal logics and alike, showing their versatility and power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequents for Conditional Logics: preliminary results, Technical Report (2012), http://www.di.unito.it/~pozzato/termcso.pdf

  2. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. Journal of Logic and Computation 12(6), 1027–1060 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts in Logic and Games, Special Issue on New Perspectives on Games and Interaction 4, 9–31 (2008)

    MathSciNet  Google Scholar 

  4. Board, O.: Dynamic interactive epistemology. Games and Economic Behavior 49(1), 49–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68(1), 87–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brünnler, K.: Deep sequent systems for modal logic. Archive for Mathematical Logic 48(6), 551–577 (2009), http://www.iam.unibe.ch/~kai/Papers/2009dssml.pdf

    Article  MathSciNet  MATH  Google Scholar 

  7. Brünnler, K.: Nested sequents (2010), habilitation Thesis, http://arxiv.org/pdf/1004.1845

  8. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure Applied Logic 163(3), 291–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gent, I.P.: A sequent or tableaux-style system for lewis’s counterfactual logic vc. Notre Dame Journal of Formal Logic 33(3), 369–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsberg, M.L.: Counterfactuals. Artificial Intelligence 30(1), 35–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi for KLM Logics of Nonmonotonic Reasoning. ACM Trans. Comput. Logic 10(3) (2009)

    Google Scholar 

  12. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong ramsey test: A logical formalization. Artificial Intelligence 168(1-2), 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: Pcl and its extensions. ACM Trans. Comput. Logic 10(3) (2009)

    Google Scholar 

  14. Grahne, G.: Updates and counterfactuals. Journal of Logic and Computation 8(1), 87–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)

    Google Scholar 

  17. Nute, D.: Topics in conditional logic. Reidel, Dordrecht (1980)

    Book  MATH  Google Scholar 

  18. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A Sequent Calculus and a Theorem Prover for Standard Conditional Logics. ACM Trans. Comput. Logic 8(4) (2007)

    Google Scholar 

  19. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Logical Methods in Computer Science 7(1) (2011)

    Google Scholar 

  20. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: ECAI. pp. 707–712 (2010)

    Google Scholar 

  21. de Swart, H.C.M.: A gentzen- or beth-type system, a practical decision procedure and a constructive completeness proof for the counterfactual logics vc and vcs. Journal of Symbolic Logic 48(1), 1–20 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alenda, R., Olivetti, N., Pozzato, G.L. (2012). Nested Sequent Calculi for Conditional Logics. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics