Abstract
Learning management systems are widely used as a support of distance learning. Recently, these systems successfully help in present education as well. Learning management systems store large amount of data based on the history of users’ interactions with the system. Obtained information is commonly used for further course optimization, finding e-tutors in collaboration learning, analysis of students’ behavior, or for other purposes. The partial goal of the paper is an analysis of students’ behavior in a learning management system. Students’ behavior is defined using selected methods from sequential and process mining with the focus to the reduction of large amount of extracted sequences. The main goal of the paper is description of our Left-Right Oscillate algorithm for community detection. The usage of this algorithm is presented on the extracted sequences from the learning management system. The core of this work is based on spectral ordering. Spectral ordering is the first part of an algorithm used to seek out communities within selected, evaluated networks. More precise designations for communities are then monitored using modularity.
Chapter PDF
Similar content being viewed by others
References
Castro, F., Vellido, A., Nebot, A., Mugica, F.: Applying Data Mining Techniques to e-Learning Problems. In: Jain, L., Tedman, R., Tedman, D. (eds.) Evolution of Teaching and Learning Paradigms in Intelligent Environment. SCI, vol. 62, pp. 183–221. Springer, Heidelberg (2007)
Chen, B., Shen, C., Ma, G., Zhang, Y., Zhou, Y.: The evaluation and analysis of student e-learning behaviour. In: IEEE/ACIS 10th International Conference on Computer and Information Science (ICIS), pp. 244–248 (2011)
Chen, J., Huang, K., Wang, F., Wang, H.: E-learning behavior analysis based on fuzzy clustering. In: Proceedings of International Conference on Genetic and Evolutionary Computing (2009)
Cheng, D., Kannan, R., Vempala, S., Wang, G.: On a recursive spectral algorithm for clustering from pairwise similarities. Technical report, MIT (2003)
Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)
Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral Clustering by Recursive Partitioning. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 256–267. Springer, Heidelberg (2006)
Ding, C., He, X.: Linearized cluster assignment via spectral ordering. In: Twentyfirst International Conference on Machine Learning, ICML 2004, vol. 21, p. 30 (2004)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW, vol. 57. Oxford University Press (2003)
Dráždilová, P., Obadi, G., Slaninová, K., Al-Dubaee, S., Martinovič, J., Snášel, V.: Computational Intelligence Methods for Data Analysis and Mining of eLearning Activities. In: Xhafa, F., Caballé, S., Abraham, A., Daradoumis, T., Juan Perez, A.A. (eds.) Computational Intelligence for Tech. Enhanced Learning. SCI, vol. 273, pp. 195–224. Springer, Heidelberg (2010)
Dráždilová, P., Slaninová, K., Martinovič, J., Obadi, G., Snášel, V.: Creation of students’ activities from learning management system and their analysis. In: Abraham, A., Snášel, V., Wegrzyn-Wolska, K. (eds.) IEEE Proceedings of International Conference on Computational Aspects of Social Networks, CASON 2009, pp. 155–160 (2009)
El-halees, A.: Mining students data to analyze learning behavior: a case study (2008)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)
Guo, A., Siegelmann, H.: Time-Warped Longest Common Subsequence Algorithm for Music Retrieval, pp. 258–261. Universitat Pompeu Fabra (2004)
Hershkovitz, A., Nachmias, R.: Learning about online learning processes and students’ motivation through web usage mining. Interdisciplinary Journal of E-Learning and Learning Objects 5, 197–214 (2009)
Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24, 664–675 (1977)
Müller, M.: Information Retrieval for Music and Motion. Springer (2007)
Newman, M.E.J., Barabási, A.-L., Watts, D.J.: The structure and dynamics of networks, vol. 107. Princeton University Press (2006)
Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B Condensed Matter 38(2), 321–330 (2004)
Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103(23), 8577–8582 (2006)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 69(2 Pt 2), 16 (2004)
Slaninová, K., Kocyan, T., Martinovič, J., Dráždilová, P., Snášel, V.: Dynamic time warping in analysis of student behavioral patterns. In: Proceedings of the Dateso 2012, Annual International Workshop on DAtabases, TExts, Specifications and Objects, pp. 49–59 (2012)
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011)
van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Supported Coop. Work 14(6), 549–593 (2005)
White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the Fifth SIAM International Conference on Data Mining, vol. 119, p. 274 (2005)
Yang, F., Shen, R., Han, P.: Construction and application of the learning behavior analysis center based on open e-learning platform (2002)
Zorrilla, M.E., Menasalvas, E., Marín, D., Mora, E., Segovia, J.: Web Usage Mining Project for Improving Web-Based Learning Sites. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 IFIP International Federation for Information Processing
About this paper
Cite this paper
Martinovič, J., Dráždilová, P., Slaninová, K., Kocyan, T., Snášel, V. (2012). Left-Right Oscillate Algorithm for Community Detection Used in E-Learning System. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds) Computer Information Systems and Industrial Management. CISIM 2012. Lecture Notes in Computer Science, vol 7564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33260-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-33260-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33259-3
Online ISBN: 978-3-642-33260-9
eBook Packages: Computer ScienceComputer Science (R0)