Abstract
Active exploration is a necessary component of a putative spatial representation system in the mammalian brain. We address the problem of how spatial exploratory behaviour is generated in rodents by combining an artificial neural network model of place coding with a multiobjective evolutionary algorithm that tunes the model parameters so as to maximise the efficiency of environment exploration. A central property of the spatial representation model is an online calibration between external visual cues and path integration, a widely accepted concept in theoretical accounts of spatial learning in animals. We find that the artificially evolved exploration model leads to recurrent patterns of exploratory behaviour in a way observed in experimental studies of spatial exploration in rodents. Our results provide a link between the functional organisation of the biological spatial learning network and the observed high-level patterns of exploratory behaviour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arleo, A., Rondi-Reig, L.: Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J. Integr. Neurosci. 6(3), 327–366 (2007)
Drai, D., Kafkafi, N., Benjamini, Y., Elmer, G., Golani, I.: Rats and mice share common ethologically relevant parameters of exploratory behavior. Behav. Brain. Res. 125, 133–140 (2001)
Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): Part I. the essential algorithms. IEEE Rob. Autom. 13, 99–110 (2006)
Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., Fried, I.: Cellular networks underlying human spatial navigation. Nature 425(6954), 184–188 (2003)
Fonio, E., Benjamini, Y., Golani, I.: Freedom of movement and the stability of its unfolding in free exploration of mice. Proc. Natl. Acad. Sci. USA 106(50), 21335–21340 (2009)
Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004)
Horn, J., Nafpliotis, N., Goldberg, D.: A niched pareto genetic algorithm for multiobjective optimization. In: IEEE WCCI, Congress on Evolutionary Computation, pp. 82–87 (1994)
McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7(8), 663–678 (2006)
Mouret, J.B., Doncieux, S.: Sferes v2: Evolvin’ in the multi-core world. In: IEEE WCCI, Congress on Evolutionary Computation, vol. (3), pp. 4079–4086 (2010)
O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)
Sheynikhovich, D., Chavarriaga, R., Strösslin, T., Arleo, A., Gerstner, W.: Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychol. Rev. 116(3), 540–566 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sheynikhovich, D., Grèzes, F., King, JR., Arleo, A. (2012). Exploratory Behaviour Depends on Multisensory Integration during Spatial Learning. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-33269-2_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33268-5
Online ISBN: 978-3-642-33269-2
eBook Packages: Computer ScienceComputer Science (R0)