[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spike Transmission on Diverging/Converging Neural Network and Its Implementation on a Multilevel Modeling Platform

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

  • 4138 Accesses

Abstract

A multiple layers neural network characterized by diverging/converging projections between successive layers activated by an external spatio-temporal input pattern in presence of stochastic background activities was considered. In the previous studies we reported the properties and performance of spike information transmission in the network depending on neuron model type, inputed information type and background activity level. The models were rather simple and can be more detailed and bigger in size for further investigation. Based on a technology developed in the integrated physiology, we have implemented the network model on PhysioDesigner, a platform for multilevel mathematical modeling of physiological systems. This article instructs a use case of PhysioDesigner and the assistive function of PhysioDesigner especially for large size neuronal network modeling is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abeles, M.: Local Cortical Circuits. Springer (1982)

    Google Scholar 

  2. Asai, Y., Villa, A.E.P.: Transmission of Distributed Deterministic Temporal Information through a Diverging/Converging Three-Layers Neural Network. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 145–154. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Asai, Y., Guha, A., Villa, A.E.P.: Deterministic neural dynamics transmitted through neural networks. Neural Networks 21, 799–809 (2008)

    Article  Google Scholar 

  4. Asai, Y., Villa, A.E.P.: Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike train. Journal of Biological Physics 34, 325–340 (2008)

    Article  Google Scholar 

  5. Tetko, I.V., Villa, A.E.: A Comparative Study of Pattern Detection Algorithm and Dynamical System Approach Using Simulated Spike Trains. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 37–42. Springer, Heidelberg (1997)

    Google Scholar 

  6. Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a Dynamical System Attractor from Spike Train Analysis. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Article  Google Scholar 

  8. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  9. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3 (2009), doi:10.3389/neuro.10.009.2009

    Google Scholar 

  10. Nomura, T.: Toward integration of biological and physiological functions at multiple levels. Frontiers in Systems Physiology 1(164) (2010)

    Google Scholar 

  11. Asai, Y., Oka, H., Abe, T., Okita, M., Hagihara, K., Nomura, T., Kitano, H.: An open platform toward large-scale multilevel modeling and simulation of physiological systems. In: Conference Proceedings of the 11th Annual International Symposium on Applications and the Internet, SAINT 2011, pp. 250–255 (2011)

    Google Scholar 

  12. Asai, Y., Suzuki, Y., Kido, Y., Oka, H., Heien, E., Nakanishi, M., Urai, T., Hagihara, K., Kurachi, Y., Nomura, T.: Specifications of insilicoml 1.0: a multilevel biophysical model description language. J. Physiol. Sci. 58(7), 447–458 (2008)

    Article  Google Scholar 

  13. Villa, A.E.P., Iglesias, J.: OpenAdap.net: Evolvable Information Processing Environment. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 227–236. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novère, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J., Forum, S.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  15. Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K.Y.Y., Kitano, H.: Software for systems biology: from tools to integrated platforms. Nat. Rev. Genet. 12(12), 821–832 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asai, Y., Villa, A.E.P. (2012). Spike Transmission on Diverging/Converging Neural Network and Its Implementation on a Multilevel Modeling Platform. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics