Abstract
In this work we will apply sparse linear regression methods to forecast wind farm energy production using numerical weather prediction (NWP) features over several pressure levels, a problem where pattern dimension can become very large. We shall place sparse regression in the context of proximal optimization, which we shall briefly review, and we shall show how sparse methods outperform other models while at the same time shedding light on the most relevant NWP features and on their predictive structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agencia española de meteorología (2012), http://www.aemet.es
Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)
Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. Recherche 49, 1–25 (2009)
Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(12), 55–67 (1970)
Kowalski, M., Torrésani, B.: Structured sparsity: from mixed norms to structured shrinkage. In: Gribonval, R. (ed.) SPARS 2009 – Signal Processing with Adaptive Sparse Structured Representations. Inria Rennes – Bretagne Atlantique, Saint Malo, France (2009)
Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regularization with proximal methods. In: ECML/PKDD (2), Berlin, Heidelberg, pp. 418–433 (2010)
Sotavento (2012), http://www.sotaventogalicia.com
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society – Series B: Statistical Methodology 68(1), 49–67 (2006)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society – Series B: Statistical Methodology 67(2), 301–320 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alaíz, C.M., Torres, A., Dorronsoro, J.R. (2012). Sparse Linear Wind Farm Energy Forecast. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-33266-1_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33265-4
Online ISBN: 978-3-642-33266-1
eBook Packages: Computer ScienceComputer Science (R0)