[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

In this work we will apply sparse linear regression methods to forecast wind farm energy production using numerical weather prediction (NWP) features over several pressure levels, a problem where pattern dimension can become very large. We shall place sparse regression in the context of proximal optimization, which we shall briefly review, and we shall show how sparse methods outperform other models while at the same time shedding light on the most relevant NWP features and on their predictive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agencia española de meteorología (2012), http://www.aemet.es

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. Recherche 49, 1–25 (2009)

    Google Scholar 

  4. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(12), 55–67 (1970)

    Article  MATH  Google Scholar 

  5. Kowalski, M., Torrésani, B.: Structured sparsity: from mixed norms to structured shrinkage. In: Gribonval, R. (ed.) SPARS 2009 – Signal Processing with Adaptive Sparse Structured Representations. Inria Rennes – Bretagne Atlantique, Saint Malo, France (2009)

    Google Scholar 

  6. Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regularization with proximal methods. In: ECML/PKDD (2), Berlin, Heidelberg, pp. 418–433 (2010)

    Google Scholar 

  7. Sotavento (2012), http://www.sotaventogalicia.com

  8. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society – Series B: Statistical Methodology 68(1), 49–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society – Series B: Statistical Methodology 67(2), 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alaíz, C.M., Torres, A., Dorronsoro, J.R. (2012). Sparse Linear Wind Farm Energy Forecast. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics