[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Autoencoding Ground Motion Data for Visualisation

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

We present a new visualisation method for physical data based on the autoencoder that allows a transparent interpretation of the induced visualisation. The autoencoder is a neural network that compresses high-dimensional data into low-dimensional representations. It defines a fan-in fan-out architecture, with the middle layer composed of a small number of neurons referred to as the ‘bottleneck’. When data are propagated through the network, the bottleneck forces the autoencoder to reduce the dimensionality of the data. Physical data are manifestations of physical models that express domain knowledge. Such knowledge should be reflected in the visualisation in order to help the analyst understand why the data are projected to their particular locations. In this work we endow the standard autoencoder with this capability by extending it with extra layers. We apply our approach on a dataset of ground motions and discuss how the visualisation reflects physical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks 2, 53–58 (1989)

    Article  Google Scholar 

  2. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press (1996)

    Google Scholar 

  3. Bishop, C.M., Svensén, M., Williams, C.K.I.: Magnification Factors for the GTM Algorithm. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 64–69. Springer, Heidelberg (1997)

    Google Scholar 

  4. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)

    Article  Google Scholar 

  5. Boore, D.M.: Simulation of ground motion using the stochastic method. Pure and Applied Geophysics 160, 635–676 (2003)

    Article  Google Scholar 

  6. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)

    Article  Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer (2001)

    Google Scholar 

  8. Hinton, S.: Reducing the dimensionality of data with neural networks. SCIENCE: Science 313 (2006)

    Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  10. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal 37, 233–243 (1991)

    Article  Google Scholar 

  11. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: NIPS 16 (2004)

    Google Scholar 

  12. Scherbaum, F., Kuehn, N.M., Ohrnberger, M., Koehler, A.: Exploring the proximity of ground-motion models using high-dimensional visualization techniques. Earthquake Spectra 26(4), 1117–1138 (2010)

    Article  Google Scholar 

  13. Tan, C.C., Eswaran, C.: Autoencoder Neural Networks: A Performance Study Based on Image Reconstruction, Recognition and Compression. Lambert Academic Publishing (2009)

    Google Scholar 

  14. Tiňo, P., Gianniotis, N.: Metric properties of structured data visualizations through generative probabilistic modeling. In: IJCAI 2007, pp. 1083–1088 (2007)

    Google Scholar 

  15. Ultsch, A., Siemon, H.P.: Kohonen’s self organizing feature maps for exploratory data analysis. In: INNC Paris, vol. 90, pp. 305–308 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gianniotis, N., Riggelsen, C., Kühn, N., Scherbaum, F. (2012). Autoencoding Ground Motion Data for Visualisation. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics