[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Searching for Pareto-optimal Randomised Algorithms

  • Conference paper
Search Based Software Engineering (SSBSE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7515))

Included in the following conference series:

Abstract

Randomised algorithms traditionally make stochastic decisions based on the result of sampling from a uniform probability distribution, such as the toss of a fair coin. In this paper, we relax this constraint, and investigate the potential benefits of allowing randomised algorithms to use non-uniform probability distributions. We show that the choice of probability distribution influences the non-functional properties of such algorithms, providing an avenue of optimisation to satisfy non-functional requirements. We use Multi-Objective Optimisation techniques in conjunction with Genetic Algorithms to investigate the possibility of trading-off non-functional properties, by searching the space of probability distributions. Using a randomised self-stabilising token circulation algorithm as a case study, we show that it is possible to find solutions that result in Pareto-optimal trade-offs between non-functional properties, such as self-stabilisation time, service time, and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-functional system properties. Information and Software Technology 51, 957–976 (2009)

    Article  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  3. Beauquier, J., Cordier, S., Delaët, S.: Optimum probabilistic self-stabilization on uniform rings. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 15.1–15.15 (1995)

    Google Scholar 

  4. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-stabilizing leader election protocols. In: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 199–207. ACM (1999)

    Google Scholar 

  5. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space optimal leader election under arbitrary scheduler on rings. Distributed Computing 20, 75–93 (2007)

    Article  Google Scholar 

  6. Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dolev, S.: Self-stabilization. The MIT Press (2000)

    Google Scholar 

  10. Harman, M., Mansouri, S., Zhang, Y.: Search Based Software Engineering: A Comprehensive Analysis and Review of Trends Techniques and Applications. Department of Computer Science, Kings College London, Tech. Rep. TR-09-03 (2009)

    Google Scholar 

  11. Herman, T.: Probabilistic Self-stabilization. Information Processing Letters 35(2), 63–67 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higham, L., Myers, S.: Self-stabilizing token circulation on anonymous message passing rings. In: OPODIS 1998 Second International Conference on Principles of Distributed Systems (1999)

    Google Scholar 

  13. Johnen, C.: Service Time Optimal Self-stabilizing Token Circulation Protocol on Anonymous Undirectional Rings. In: Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, pp. 80–89. IEEE (2002)

    Google Scholar 

  14. Johnson, C.G.: Genetic Programming with Fitness Based on Model Checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Katz, G., Peled, D.: Genetic Programming and Model Checking: Synthesizing New Mutual Exclusion Algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Katz, G., Peled, D.: Model Checking-Based Genetic Programming with an Application to Mutual Exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

    Google Scholar 

  19. Luke, S.: ECJ, http://cs.gmu.edu/~eclab/projects/ecj/

  20. Motwani, R.: Randomized Algorithms. Cambridge University Press (1995)

    Google Scholar 

  21. Norman, G.: Analysing Randomized Distributed Algorithms. Validation of Stochastic Systems, pp. 384–418 (2004)

    Google Scholar 

  22. Rabin, M.: Probabilistic algorithms. Algorithms and Complexity 21 (1976)

    Google Scholar 

  23. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Millard, A.G., White, D.R., Clark, J.A. (2012). Searching for Pareto-optimal Randomised Algorithms. In: Fraser, G., Teixeira de Souza, J. (eds) Search Based Software Engineering. SSBSE 2012. Lecture Notes in Computer Science, vol 7515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33119-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33119-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33118-3

  • Online ISBN: 978-3-642-33119-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics