Abstract
Randomised algorithms traditionally make stochastic decisions based on the result of sampling from a uniform probability distribution, such as the toss of a fair coin. In this paper, we relax this constraint, and investigate the potential benefits of allowing randomised algorithms to use non-uniform probability distributions. We show that the choice of probability distribution influences the non-functional properties of such algorithms, providing an avenue of optimisation to satisfy non-functional requirements. We use Multi-Objective Optimisation techniques in conjunction with Genetic Algorithms to investigate the possibility of trading-off non-functional properties, by searching the space of probability distributions. Using a randomised self-stabilising token circulation algorithm as a case study, we show that it is possible to find solutions that result in Pareto-optimal trade-offs between non-functional properties, such as self-stabilisation time, service time, and fairness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-functional system properties. Information and Software Technology 51, 957–976 (2009)
Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 82–93 (1980)
Beauquier, J., Cordier, S., Delaët, S.: Optimum probabilistic self-stabilization on uniform rings. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 15.1–15.15 (1995)
Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-stabilizing leader election protocols. In: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 199–207. ACM (1999)
Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space optimal leader election under arbitrary scheduler on rings. Distributed Computing 20, 75–93 (2007)
Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)
Dolev, S.: Self-stabilization. The MIT Press (2000)
Harman, M., Mansouri, S., Zhang, Y.: Search Based Software Engineering: A Comprehensive Analysis and Review of Trends Techniques and Applications. Department of Computer Science, Kings College London, Tech. Rep. TR-09-03 (2009)
Herman, T.: Probabilistic Self-stabilization. Information Processing Letters 35(2), 63–67 (1990)
Higham, L., Myers, S.: Self-stabilizing token circulation on anonymous message passing rings. In: OPODIS 1998 Second International Conference on Principles of Distributed Systems (1999)
Johnen, C.: Service Time Optimal Self-stabilizing Token Circulation Protocol on Anonymous Undirectional Rings. In: Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, pp. 80–89. IEEE (2002)
Johnson, C.G.: Genetic Programming with Fitness Based on Model Checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)
Katz, G., Peled, D.: Genetic Programming and Model Checking: Synthesizing New Mutual Exclusion Algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)
Katz, G., Peled, D.: Model Checking-Based Genetic Programming with an Application to Mutual Exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)
Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)
Luke, S.: ECJ, http://cs.gmu.edu/~eclab/projects/ecj/
Motwani, R.: Randomized Algorithms. Cambridge University Press (1995)
Norman, G.: Analysing Randomized Distributed Algorithms. Validation of Stochastic Systems, pp. 384–418 (2004)
Rabin, M.: Probabilistic algorithms. Algorithms and Complexity 21 (1976)
Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Millard, A.G., White, D.R., Clark, J.A. (2012). Searching for Pareto-optimal Randomised Algorithms. In: Fraser, G., Teixeira de Souza, J. (eds) Search Based Software Engineering. SSBSE 2012. Lecture Notes in Computer Science, vol 7515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33119-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-33119-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33118-3
Online ISBN: 978-3-642-33119-0
eBook Packages: Computer ScienceComputer Science (R0)