[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing over the Growing Spectrahedron

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

We devise a framework for computing an approximate solution path for an important class of parameterized semidefinite problems that is guaranteed to be ε-close to the exact solution path. The problem of computing the entire regularization path for matrix factorization problems such as maximum-margin matrix factorization fits into this framework, as well as many other nuclear norm regularized convex optimization problems from machine learning. We show that the combinatorial complexity of the approximate path is independent of the size of the matrix. Furthermore, the whole solution path can be computed in near linear time in the size of the input matrix.

The framework employs an approximative semidefinite program solver for a fixed parameter value. Here we use an algorithm that has recently been introduced by Hazan. We present a refined analysis of Hazan’s algorithm that results in improved running time bounds for a single solution as well as for the whole solution path as a function of the approximation guarantee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Hazan, E., Kale, S.: Fast Algorithms for Approximate Semidefinite Programming using the Multiplicative Weights Update Method. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 339–348 (2005)

    Google Scholar 

  2. Candès, E.J., Tao, T.: The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Transactions on Information Theory 56(5), 2053–2080 (2010)

    Article  Google Scholar 

  3. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transactions on Algorithms 6(4) (2010)

    Google Scholar 

  4. d’Aspremont, A., Bach, F.R., El Ghaoui, L.: Full Regularization Path for Sparse Principal Component Analysis. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 177–184 (2007)

    Google Scholar 

  5. Fazel, M., Hindi, H., Boyd, S.P.: A Rank Minimization Heuristic with Application to Minimum Order System Approximation. In: Proceedings of the American Control Conference, vol. 6, pp. 4734–4739 (2001)

    Google Scholar 

  6. Giesen, J., Jaggi, M., Laue, S.: Approximating Parameterized Convex Optimization Problems. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 524–535. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Giesen, J., Jaggi, M., Laue, S.: Regularization Paths with Guarantees for Convex Semidefinite Optimization. In: Proceedings International Conference on Artificial Intelligence and Statistics (AISTATS) (2012)

    Google Scholar 

  8. Hazan, E.: Sparse Approximate Solutions to Semidefinite Programs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 306–316. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Jaggi, M., Sulovský, M.: A Simple Algorithm for Nuclear Norm Regularized Problems. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 471–478 (2010)

    Google Scholar 

  10. Koren, Y., Bell, R.M., Volinsky, C.: Matrix Factorization Techniques for Recommender Systems. IEEE Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Kuczyński, J., Woźniakowski, H.: Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start. SIAM Journal on Matrix Analysis and Applications 13(4), 1094–1122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral Regularization Algorithms for Learning Large Incomplete Matrices. Journal of Machine Learning Research 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Nemirovski, A.: Prox-method with Rate of Convergence O(1/T) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-concave Saddle Point Problems. SIAM Journal on Optimization 15, 229–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nesterov, Y.: Smoothing Technique and its Applications in Semidefinite Optimization. Math. Program. 110(2), 245–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salakhutdinov, R., Srebro, N.: Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), vol. 23 (2010)

    Google Scholar 

  16. Srebro, N., Rennie, J.D.M., Jaakkola, T.: Maximum-Margin Matrix Factorization. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), vol. 17 (2004)

    Google Scholar 

  17. Wen, Z., Goldfarb, D., Yin, W.: Alternating Direction Augmented Lagrangian Methods for Semidefinite Programming. Technical report (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesen, J., Jaggi, M., Laue, S. (2012). Optimizing over the Growing Spectrahedron. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics