[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Faster Geometric Algorithms via Dynamic Determinant Computation

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

Determinant computation is the core procedure in many important geometric algorithms, such as convex hull computations and point locations. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. In this paper we study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates.

We propose two dynamic determinant algorithms with quadratic complexity when employed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our implementations outperform the state-of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, J., Bronstein, M., Mulders, T.: Fast deterministic computation of determinants of dense matrices. In: ISSAC, pp. 197–203 (1999)

    Google Scholar 

  2. Avis, D.: lrs: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes - Combinatorics and Computation, Oberwolfach Seminars, vol. 29, pp. 177–198. Birkhäuser-Verlag (2000)

    Google Scholar 

  3. Bartlett, M.S.: An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics 22(1), 107–111 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics, 91–147 (1999)

    Google Scholar 

  5. Bird, R.: A simple division-free algorithm for computing determinants. Inf. Process. Lett. 111, 1072–1074 (2011)

    Article  MathSciNet  Google Scholar 

  6. Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension. In: SoCG, pp. 208–216 (2009)

    Google Scholar 

  7. Boost: peer reviewed C++ libraries, http://www.boost.org

  8. Brönnimann, H., Emiris, I., Pan, V., Pion, S.: Sign determination in Residue Number Systems. Theor. Comp. Science 210(1), 173–197 (1999)

    Article  MATH  Google Scholar 

  9. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: A practical study (1998)

    Google Scholar 

  10. CGAL: Computational geometry algorithms library, http://www.cgal.org

  11. Clarkson, K., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Comput. Geom.: Theory & Appl. 3, 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. Dumas, J.G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E., Saunders, B., Turner, W., Villard, G.: Linbox: A generic library for exact linear algebra. In: ICMS, pp. 40–50 (2002)

    Google Scholar 

  14. Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer-Verlag New York, Inc., New York (1987)

    Book  MATH  Google Scholar 

  15. Emiris, I., Fisikopoulos, V., Konaxis, C., Peñaranda, L.: An output-sensitive algorithm for computing projections of resultant polytopes. In: SoCG, pp. 179–188 (2012)

    Google Scholar 

  16. Fukuda, K.: cddlib, version 0.94f (2008), http://www.ifor.math.ethz.ch/~fukuda/cdd_home

  17. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes, pp. 43–74 (1999)

    Google Scholar 

  18. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010), http://eigen.tuxfamily.org

  19. Harville, D.A.: Matrix algebra from a statistician’s perspective. Springer, New York (1997)

    Book  MATH  Google Scholar 

  20. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational Complexity 13, 91–130 (2005)

    Article  MathSciNet  Google Scholar 

  21. Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411, 68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Poole, D.: Linear Algebra: A Modern Introduction. Cengage Learning (2006)

    Google Scholar 

  23. Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A., Gao, X.S., Takayama, N. (eds.) Math. Software: ICMS, pp. 330–340. World Scientific (2002)

    Google Scholar 

  24. Rote, G.: Division-free algorithms for the determinant and the Pfaffian: algebraic and combinatorial approaches. Comp. Disc. Math., 119–135 (2001)

    Google Scholar 

  25. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Proc. IEEE Symp. on Found. Comp. Sci., pp. 509–517 (2004)

    Google Scholar 

  26. Seidel, R.: A convex hull algorithm optimal for point sets in even dimensions. Tech. Rep. 81-14, Dept. Comp. Sci., Univ. British Columbia, Vancouver (1981)

    Google Scholar 

  27. Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics 21(1), 124–127 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ziegler, G.: Lectures on Polytopes. Springer (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisikopoulos, V., Peñaranda, L. (2012). Faster Geometric Algorithms via Dynamic Determinant Computation. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics