Abstract
Determinant computation is the core procedure in many important geometric algorithms, such as convex hull computations and point locations. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. In this paper we study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates.
We propose two dynamic determinant algorithms with quadratic complexity when employed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our implementations outperform the state-of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbott, J., Bronstein, M., Mulders, T.: Fast deterministic computation of determinants of dense matrices. In: ISSAC, pp. 197–203 (1999)
Avis, D.: lrs: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes - Combinatorics and Computation, Oberwolfach Seminars, vol. 29, pp. 177–198. Birkhäuser-Verlag (2000)
Bartlett, M.S.: An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics 22(1), 107–111 (1951)
Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics, 91–147 (1999)
Bird, R.: A simple division-free algorithm for computing determinants. Inf. Process. Lett. 111, 1072–1074 (2011)
Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension. In: SoCG, pp. 208–216 (2009)
Boost: peer reviewed C++ libraries, http://www.boost.org
Brönnimann, H., Emiris, I., Pan, V., Pion, S.: Sign determination in Residue Number Systems. Theor. Comp. Science 210(1), 173–197 (1999)
Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: A practical study (1998)
CGAL: Computational geometry algorithms library, http://www.cgal.org
Clarkson, K., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Comput. Geom.: Theory & Appl. 3, 185–212 (1993)
Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, Heidelberg (2005)
Dumas, J.G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E., Saunders, B., Turner, W., Villard, G.: Linbox: A generic library for exact linear algebra. In: ICMS, pp. 40–50 (2002)
Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer-Verlag New York, Inc., New York (1987)
Emiris, I., Fisikopoulos, V., Konaxis, C., Peñaranda, L.: An output-sensitive algorithm for computing projections of resultant polytopes. In: SoCG, pp. 179–188 (2012)
Fukuda, K.: cddlib, version 0.94f (2008), http://www.ifor.math.ethz.ch/~fukuda/cdd_home
Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes, pp. 43–74 (1999)
Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010), http://eigen.tuxfamily.org
Harville, D.A.: Matrix algebra from a statistician’s perspective. Springer, New York (1997)
Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational Complexity 13, 91–130 (2005)
Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411, 68 (2005)
Poole, D.: Linear Algebra: A Modern Introduction. Cengage Learning (2006)
Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A., Gao, X.S., Takayama, N. (eds.) Math. Software: ICMS, pp. 330–340. World Scientific (2002)
Rote, G.: Division-free algorithms for the determinant and the Pfaffian: algebraic and combinatorial approaches. Comp. Disc. Math., 119–135 (2001)
Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Proc. IEEE Symp. on Found. Comp. Sci., pp. 509–517 (2004)
Seidel, R.: A convex hull algorithm optimal for point sets in even dimensions. Tech. Rep. 81-14, Dept. Comp. Sci., Univ. British Columbia, Vancouver (1981)
Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics 21(1), 124–127 (1950)
Ziegler, G.: Lectures on Polytopes. Springer (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fisikopoulos, V., Peñaranda, L. (2012). Faster Geometric Algorithms via Dynamic Determinant Computation. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-33090-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33089-6
Online ISBN: 978-3-642-33090-2
eBook Packages: Computer ScienceComputer Science (R0)