Abstract
In neuroscience it became popular to represent neuroimaging data from the human brain as networks. The edges of these (weighted) graphs represent a spatio-temporal similarity between paired data channels. The temporal series of graphs is commonly averaged to a weighted graph of which edge weights are eventually thresholded. Graph measures are then applied to this network to correlate them, e.g. with clinical variables. This approach has some major drawbacks we will discuss in this paper. We identify three limitations of static graphs: selecting a similarity measure, averaging over time, choosing an (arbitrary) threshold value. The latter two procedures should not be performed due to the loss of brain activity dynamics. We propose to work on series of weighted graphs to obtain time series of graph measures. We use vector autoregressive (VAR) models to facilitate a statistical analysis of the resulting time series. Machine learning techniques are used to find dependencies between VAR parameters and clinical variables. We conclude with a discussion and possible ideas for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)
Butts, C.T.: Revisiting the foundations of network analysis. Science 325(5939), 414–416 (2009)
Csárdi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems 1695 (2006)
Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159(2), 203–221 (1961)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)
Edwards, E.: Electrocortical activation and human brain mapping. PhD thesis, University of California, Berkeley, CA, USA (2007)
Held, P., Moewes, C., Braune, C., Kruse, R., Sabel, B.A.: Advanced Analysis of Dynamic Graphs in Social and Neural Networks. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 205–222. Springer, Heidelberg (2012)
Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. In: Econometrics / Statistics. Springer, Heidelberg (2005)
Makeig, S., Bell, A.J., Jung, T., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 145–151. MIT Press, Cambridge (1996)
Montez, T., Linkenkaer-Hansen, K., van Dijk, B.W., Stam, C.J.: Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4), 1117–1125 (2006)
Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)
Pedregosa, F., Varoquaux, G., Gramfort, et al.: Scikit-learn: Machine learning in python. JMLR 12, 2825–2830 (2011)
Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)
Sabel, B.A., Fedorov, A.B., Naue, N., Borrmann, A., Herrmann, C., Gall, C.: Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci. 29(6), 493–505 (2011)
Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)
Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-World networks and functional connectivity in alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)
Stam, C.J., van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. J. Phys. D: Nonlinear Phenom. 163(3-4), 236–251 (2002)
Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)
Wendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L.: From EEG signals to brain connectivity: A model-based evaluation of interdependence measures. J. Neurosci. Methods 183(1), 9–18 (2009)
Wüst, S., Kasten, E., Sabel, B.A.: Blindsight after optic nerve injury indicates functionality of spared fibers. J. Cogn. Neurosci. 14(2), 243–253 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moewes, C., Kruse, R., Sabel, B.A. (2013). Analysis of Dynamic Brain Networks Using VAR Models. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-33042-1_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33041-4
Online ISBN: 978-3-642-33042-1
eBook Packages: EngineeringEngineering (R0)