[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

  • 1615 Accesses

Abstract

In neuroscience it became popular to represent neuroimaging data from the human brain as networks. The edges of these (weighted) graphs represent a spatio-temporal similarity between paired data channels. The temporal series of graphs is commonly averaged to a weighted graph of which edge weights are eventually thresholded. Graph measures are then applied to this network to correlate them, e.g. with clinical variables. This approach has some major drawbacks we will discuss in this paper. We identify three limitations of static graphs: selecting a similarity measure, averaging over time, choosing an (arbitrary) threshold value. The latter two procedures should not be performed due to the loss of brain activity dynamics. We propose to work on series of weighted graphs to obtain time series of graph measures. We use vector autoregressive (VAR) models to facilitate a statistical analysis of the resulting time series. Machine learning techniques are used to find dependencies between VAR parameters and clinical variables. We conclude with a discussion and possible ideas for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)

    Article  MathSciNet  Google Scholar 

  2. Butts, C.T.: Revisiting the foundations of network analysis. Science 325(5939), 414–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Csárdi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems 1695 (2006)

    Google Scholar 

  4. Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159(2), 203–221 (1961)

    Google Scholar 

  5. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  6. Edwards, E.: Electrocortical activation and human brain mapping. PhD thesis, University of California, Berkeley, CA, USA (2007)

    Google Scholar 

  7. Held, P., Moewes, C., Braune, C., Kruse, R., Sabel, B.A.: Advanced Analysis of Dynamic Graphs in Social and Neural Networks. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 205–222. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. In: Econometrics / Statistics. Springer, Heidelberg (2005)

    Google Scholar 

  9. Makeig, S., Bell, A.J., Jung, T., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 145–151. MIT Press, Cambridge (1996)

    Google Scholar 

  10. Montez, T., Linkenkaer-Hansen, K., van Dijk, B.W., Stam, C.J.: Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4), 1117–1125 (2006)

    Article  Google Scholar 

  11. Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pedregosa, F., Varoquaux, G., Gramfort, et al.: Scikit-learn: Machine learning in python. JMLR 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  13. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  14. Sabel, B.A., Fedorov, A.B., Naue, N., Borrmann, A., Herrmann, C., Gall, C.: Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci. 29(6), 493–505 (2011)

    Google Scholar 

  15. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)

    Google Scholar 

  16. Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-World networks and functional connectivity in alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)

    Article  Google Scholar 

  17. Stam, C.J., van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. J. Phys. D: Nonlinear Phenom. 163(3-4), 236–251 (2002)

    Article  MATH  Google Scholar 

  18. Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)

    Article  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  20. Wendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L.: From EEG signals to brain connectivity: A model-based evaluation of interdependence measures. J. Neurosci. Methods 183(1), 9–18 (2009)

    Article  Google Scholar 

  21. Wüst, S., Kasten, E., Sabel, B.A.: Blindsight after optic nerve injury indicates functionality of spared fibers. J. Cogn. Neurosci. 14(2), 243–253 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Moewes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moewes, C., Kruse, R., Sabel, B.A. (2013). Analysis of Dynamic Brain Networks Using VAR Models. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics