Abstract
Manual image segmentation performed by humans is time-intensive and inadequate for the quantification of segmentation parameters. Automatic feed-forward segmentation techniques suffer from restrictions in parameter selection and combination and are difficult in quantifying the direct parametric effect on segmentation outcome. Here, we introduce an automatic feedback-based image processing method that uses fuzzy a priori knowledge to adapt segmentation parameters. Therefore, a fuzzy evaluation of segment properties is performed for each parameter combination. The method was applied to biological cell imaging. An automatic tuning of the image segmentation process yields an optimal parameter set such that segments match known properties (a priori knowledge e.g. cell size, outline etc.).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beller, M., Stotzka, R., Müller, T.: Application of an interactive feature-driven segmentation. Biomed. Tech. 49, 210–211 (2004)
Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cyb. 25, 1543–1567 (1995)
Carpenter, A., et al.: CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006)
Donauer, J., Schreck, I., Liebel, U., Weiss, C.: Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo(a)pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Arch Toxicol 86, 329–337 (2012)
Farmer, M., Jain, A.: A wrapper-based approach in image segmentation and classification. IEEE Trans. Im. Proc. 14, 2060–2072 (2005)
Fu, K., Mui, J.: A survey on image segmentation. Pattern Recog. 13, 845–854 (1981)
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Prentice-Hall, Upper Saddle River (2003)
Grigorescu, S., Ristic-Durrant, D., Vuppala, S., Gräser, A.: Closed-loop control in image processing for improvement of object recognition. In: Proc. 17th IFAC World Congress (2008)
ul Maula Khan, A., Reischl, M., Schweitzer, B., Weiss, C., Mikut, R.: Feedback-Driven Design of Normalization Techniques for Biological Images Using Fuzzy Formulation of a Priori Knowledge. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 167–178. Springer, Heidelberg (2013)
Mikut, R., Burmeister, O., Braun, S., Reischl, M.: The open source Matlab toolbox Gait-CAD and its application to bioelectric signal processing. In: Proc. DGBMT-Workshop Biosignalverarbeitung, Potsdam, pp. 109–111 (2008)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyb. 9, 62–66 (1979)
Reischl, M., Alshut, R., Mikut, R.: On robust feature extraction and classification of inhomogeneous data sets. In: Proc. 20. Workshop Computational Intelligence, Forschungszentrum Karlsruhe, pp. 124–143 (2010)
Sommer, C., Straehle, C., Kothe, U., Hamprecht, F.: ilastik: Interactive learning and segmentation toolkit. In: Proc. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, pp. 230–233. IEEE Press (2011)
Zhang, H., Fritts, J., Goldman, S.: Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Und. 110, 260–280 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khan, A.u.M., Mikut, R., Schweitzer, B., Weiss, C., Reischl, M. (2013). Automatic Tuning of Image Segmentation Parameters by Means of Fuzzy Feature Evaluation. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-33042-1_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33041-4
Online ISBN: 978-3-642-33042-1
eBook Packages: EngineeringEngineering (R0)