[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Tuning of Image Segmentation Parameters by Means of Fuzzy Feature Evaluation

  • Conference paper
Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

Abstract

Manual image segmentation performed by humans is time-intensive and inadequate for the quantification of segmentation parameters. Automatic feed-forward segmentation techniques suffer from restrictions in parameter selection and combination and are difficult in quantifying the direct parametric effect on segmentation outcome. Here, we introduce an automatic feedback-based image processing method that uses fuzzy a priori knowledge to adapt segmentation parameters. Therefore, a fuzzy evaluation of segment properties is performed for each parameter combination. The method was applied to biological cell imaging. An automatic tuning of the image segmentation process yields an optimal parameter set such that segments match known properties (a priori knowledge e.g. cell size, outline etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beller, M., Stotzka, R., Müller, T.: Application of an interactive feature-driven segmentation. Biomed. Tech. 49, 210–211 (2004)

    Google Scholar 

  2. Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cyb. 25, 1543–1567 (1995)

    Article  Google Scholar 

  3. Carpenter, A., et al.: CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006)

    Article  Google Scholar 

  4. Donauer, J., Schreck, I., Liebel, U., Weiss, C.: Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo(a)pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Arch Toxicol 86, 329–337 (2012)

    Article  Google Scholar 

  5. Farmer, M., Jain, A.: A wrapper-based approach in image segmentation and classification. IEEE Trans. Im. Proc. 14, 2060–2072 (2005)

    Article  Google Scholar 

  6. Fu, K., Mui, J.: A survey on image segmentation. Pattern Recog. 13, 845–854 (1981)

    Article  MathSciNet  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Prentice-Hall, Upper Saddle River (2003)

    Google Scholar 

  8. Grigorescu, S., Ristic-Durrant, D., Vuppala, S., Gräser, A.: Closed-loop control in image processing for improvement of object recognition. In: Proc. 17th IFAC World Congress (2008)

    Google Scholar 

  9. ul Maula Khan, A., Reischl, M., Schweitzer, B., Weiss, C., Mikut, R.: Feedback-Driven Design of Normalization Techniques for Biological Images Using Fuzzy Formulation of a Priori Knowledge. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 167–178. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Mikut, R., Burmeister, O., Braun, S., Reischl, M.: The open source Matlab toolbox Gait-CAD and its application to bioelectric signal processing. In: Proc. DGBMT-Workshop Biosignalverarbeitung, Potsdam, pp. 109–111 (2008)

    Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyb. 9, 62–66 (1979)

    Article  Google Scholar 

  12. Reischl, M., Alshut, R., Mikut, R.: On robust feature extraction and classification of inhomogeneous data sets. In: Proc. 20. Workshop Computational Intelligence, Forschungszentrum Karlsruhe, pp. 124–143 (2010)

    Google Scholar 

  13. Sommer, C., Straehle, C., Kothe, U., Hamprecht, F.: ilastik: Interactive learning and segmentation toolkit. In: Proc. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, pp. 230–233. IEEE Press (2011)

    Google Scholar 

  14. Zhang, H., Fritts, J., Goldman, S.: Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Und. 110, 260–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, A.u.M., Mikut, R., Schweitzer, B., Weiss, C., Reischl, M. (2013). Automatic Tuning of Image Segmentation Parameters by Means of Fuzzy Feature Evaluation. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics