[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Law of Large Numbers for Exchangeable Random Variables on Nonadditive Measures

  • Conference paper
Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

Abstract

In this paper, we use the relationship between set-valued random variables and capacity to prove a strong law of large numbers for exchangeable random variables with respect to nonadditive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.: Integrals of set valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathemathics, vol. 580. Springer, Berlin (1977)

    MATH  Google Scholar 

  3. Castaldo, A., Maccheroni, F., Marinacci, M.: Random correspondences as bundles of random variables. Ind. J. Stat. 66, 409–427 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Chen, Z., Wu, P.: Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds.) Nonlinear Maths for Uncertainty and its Appli. AISC, vol. 100, pp. 19–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  6. Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S., Gil, M.A.: A generalized strong law of large numbers. Probab. Theory Rel. 114, 401–417 (1999)

    Article  MATH  Google Scholar 

  7. Feng, Y.: Strong law of large numbers for stationary sequences of random upper semicontinuous functions. Stoch. Anal. Appl. 22, 1067–1083 (2004)

    Article  MATH  Google Scholar 

  8. Guan, L., Li, S., Inoue, H.: Strong laws of large numbers for rowwise exchangeable fuzzy set-valued random variables. In: Proc. of the 11th World Congress of International Fuzzy Systems Association, pp. 411–415 (2005)

    Google Scholar 

  9. Hess, C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions. J. Math. Anal. Appl. 153, 226–249 (1983)

    Article  MathSciNet  Google Scholar 

  10. Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Inoue, H.: Randomly weighted sums for exchangeable fuzzy random variables. Fuzzy Set. Syst. 69, 347–354 (1995)

    Article  MATH  Google Scholar 

  12. Inoue, H.: Exchangeability and convergence for random sets. Inf. Sci. 133, 23–37 (2001)

    Article  MATH  Google Scholar 

  13. Inoue, H., Taylor, R.L.: A SLLN for arrays of rowwise exchangeable fuzzy random sets. Stoch. Anal. Appl. 13, 461–470 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klein, E., Thompson, A.C.: Theory of correspondences including applications to mathematical economics. John Wiley & Sons (1984)

    Google Scholar 

  15. Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  16. Maccheroni, F., Marinacci, M.: A strong law of large numbers for capacities. Ann. Probab. 33, 1171–1178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Molchanov, I.: On strong laws of large numbers for random upper semicontinuous functions. J. Math. Anal. Appl. 235, 249–355 (1999)

    Article  MathSciNet  Google Scholar 

  18. Patterson, R.F., Taylor, R.L.: Strong laws of large numbers for striangular arrays of exchangeable random variables. Stoch. Anal. Appl. 3, 171–187 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rebille, Y.: Law of large numbers for non-additive measures. J. Math. Anal. Appl. 352, 872–879 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmeidler, D.: Subjective probability and expectated utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, R.L., Daffer, P.Z., Patterson, R.F.: Limit theorems for sums of exchangeable variables. Rowman & Allanheld, Totowa (1985)

    MATH  Google Scholar 

  22. Taylor, R.L., Inoue, H.: Convergence of weighted sums of random sets. Stoch. Anal. Appl. 3, 379–396 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guan, L., Li, S. (2013). A Law of Large Numbers for Exchangeable Random Variables on Nonadditive Measures. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics