Abstract
In this paper, we use the relationship between set-valued random variables and capacity to prove a strong law of large numbers for exchangeable random variables with respect to nonadditive measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumann, R.: Integrals of set valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)
Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathemathics, vol. 580. Springer, Berlin (1977)
Castaldo, A., Maccheroni, F., Marinacci, M.: Random correspondences as bundles of random variables. Ind. J. Stat. 66, 409–427 (2004)
Chen, Z., Wu, P.: Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds.) Nonlinear Maths for Uncertainty and its Appli. AISC, vol. 100, pp. 19–30. Springer, Heidelberg (2011)
Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)
Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S., Gil, M.A.: A generalized strong law of large numbers. Probab. Theory Rel. 114, 401–417 (1999)
Feng, Y.: Strong law of large numbers for stationary sequences of random upper semicontinuous functions. Stoch. Anal. Appl. 22, 1067–1083 (2004)
Guan, L., Li, S., Inoue, H.: Strong laws of large numbers for rowwise exchangeable fuzzy set-valued random variables. In: Proc. of the 11th World Congress of International Fuzzy Systems Association, pp. 411–415 (2005)
Hess, C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions. J. Math. Anal. Appl. 153, 226–249 (1983)
Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)
Inoue, H.: Randomly weighted sums for exchangeable fuzzy random variables. Fuzzy Set. Syst. 69, 347–354 (1995)
Inoue, H.: Exchangeability and convergence for random sets. Inf. Sci. 133, 23–37 (2001)
Inoue, H., Taylor, R.L.: A SLLN for arrays of rowwise exchangeable fuzzy random sets. Stoch. Anal. Appl. 13, 461–470 (1995)
Klein, E., Thompson, A.C.: Theory of correspondences including applications to mathematical economics. John Wiley & Sons (1984)
Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables. Kluwer Academic Publishers, Dordrecht (2002)
Maccheroni, F., Marinacci, M.: A strong law of large numbers for capacities. Ann. Probab. 33, 1171–1178 (2005)
Molchanov, I.: On strong laws of large numbers for random upper semicontinuous functions. J. Math. Anal. Appl. 235, 249–355 (1999)
Patterson, R.F., Taylor, R.L.: Strong laws of large numbers for striangular arrays of exchangeable random variables. Stoch. Anal. Appl. 3, 171–187 (1985)
Rebille, Y.: Law of large numbers for non-additive measures. J. Math. Anal. Appl. 352, 872–879 (2009)
Schmeidler, D.: Subjective probability and expectated utility without additivity. Econometrica 57, 571–587 (1989)
Taylor, R.L., Daffer, P.Z., Patterson, R.F.: Limit theorems for sums of exchangeable variables. Rowman & Allanheld, Totowa (1985)
Taylor, R.L., Inoue, H.: Convergence of weighted sums of random sets. Stoch. Anal. Appl. 3, 379–396 (1985)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guan, L., Li, S. (2013). A Law of Large Numbers for Exchangeable Random Variables on Nonadditive Measures. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-33042-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33041-4
Online ISBN: 978-3-642-33042-1
eBook Packages: EngineeringEngineering (R0)