[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bootstrap Comparison of Statistics for Testing the Homoscedasticity of Random Fuzzy Sets

  • Conference paper
Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Abstract

The problem of testing the equality of variances of k random fuzzy sets has been recently developed on the basis of Levene’s classical procedure. Asymptotic and bootstrap approaches have been carried out in this framework, and the proposed test was compared with a Bartlett-type test. In this work, a deeper comparison between some bootstrap statistics based on both Levene’s and Bartlett’s classical procedures for testing the homoscedasticity of several random fuzzy sets is analyzed. The empirical behaviour of those statistics is investigated by means of simulation studies concerning both type I and type II errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. Roy. Soc. Lond. A 160, 262–282 (1937)

    Google Scholar 

  3. Box, G.E.P., Andersen, S.L.: Permutation theory in the derivation of robust criteria and the study of departures from assumptions (with discussion). J. Roy. Statist. Soc. Ser. B 17, 1–34 (1955)

    MATH  Google Scholar 

  4. Colubi, A., Domínguez-Menchero, J.S., López-Díaz, M., Ralescu, R.: A D E [0, 1] representation of random upper semicontinuous functions. Proc. Amer. Math. Soc. 130, 3237–3242 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conover, W.J., Johnson, M.E., Johnson, M.M.: A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981)

    Article  Google Scholar 

  6. González-Rodríguez, G., Colubi, A., Gil, M.A.: Fuzzy data treated as functional data: a one-way ANOVA test approach. Comput. Statist. Data Anal. 56(4), 943–955 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Körner, R.: On the variance of random fuzzy variables. Fuzzy Set Syst. 92, 83–93 (1997)

    Article  MATH  Google Scholar 

  8. Layard, M.W.J.: Robust large-sample tests for homogeneity of variances. J. Amer. Stat. Assoc. 68, 195–198 (1973)

    Article  Google Scholar 

  9. Levene, H.: Robust Tests for Equality of Variances. In: Contributions to Probability and Statistics, Palo Alto, CA, USA, pp. 278–292. Stanford University Press (1960)

    Google Scholar 

  10. Näther, W.: On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data. Metrika 51, 201–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 11, 1373–1379 (1985)

    Article  MathSciNet  Google Scholar 

  12. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramos-Guajardo, A.B., Colubi, A., González-Rodríguez, G., Gil, M.A.: One-sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika 71(2), 185–202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramos-Guajardo, A.B., Lubiano, M.A.: K-sample tests for equality of variances of random fuzzy sets. Comput. Statist. Data Anal. 56(4), 956–966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shoemaker, L.H.: Fixing the F test for equal variances. Amer. Statist. 57, 105–114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inf. Sci. 179, 3964–3972 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Belén Ramos-Guajardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramos-Guajardo, A.B., Lubiano, M.A., González-Rodríguez, G. (2013). Bootstrap Comparison of Statistics for Testing the Homoscedasticity of Random Fuzzy Sets. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics