[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Linear Regression Model for Interval-Valued Response Based on Set Arithmetic

  • Conference paper
Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

  • 1634 Accesses

Abstract

Several linear regression models involving interval-valued variables have been formalized based on the interval arithmetic. In this work, a new linear regression model with interval-valued response and real predictor based on the interval arithmetic is formally described. The least-squares estimation of the model is solved by means of a constrained minimization problem which guarantees the coherency of the estimators with the regression parameters. The practical applicability of the estimation method is checked on a real-life example, and the empirical behaviour of the procedure is shown by means of some simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Mathware Soft. Comp. 2, 71–84 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Blanco-Fernández, A., Colubi, A., González-Rodríguez, G.: Linear Regression Analysis for Interval-Valued Data Based on Set Arithmetic: A Review. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 19–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Diamond, P.: Least squares fitting of compact set-valued data. J. Math. Anal. Appl. 147, 531–544 (1990)

    Article  MathSciNet  Google Scholar 

  4. Ferraro, M.B., Coppi, R., González-Rodríguez, G., Colubi, A.: A linear regression model for imprecise response. Int. J. Approx. Reason. 51, 759–770 (2010)

    Article  MATH  Google Scholar 

  5. Gil, M.A., Lubiano, A., Montenegro, M., López, M.T.: Least squares fitting of an affine function and strength of association for interval-valued data. Metrika 56, 97–111 (2002)

    Article  MathSciNet  Google Scholar 

  6. González-Rodríguez, G., Blanco, A., Corral, N., Colubi, A.: Least squares estimation of linear regression models for convex compact random sets. Adv. D Anal. Class. 1, 67–81 (2007)

    Article  MATH  Google Scholar 

  7. Ham, J., Hsiao, C.: Two-stage estimation of structural labor supply parameters using interval data from the 1971 Canadian Census. J. Econom. 24, 133–158 (1984)

    Article  MATH  Google Scholar 

  8. Huber, C., Solev, V., Vonta, F.: Interval censored and truncated data: Rate of convergence of NPMLE of the density. J. Stat. Plann. Infer. 139, 1734–1749 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Molchanov, I.: Theory of random sets. Probability and Its Applications. Springer, London (2005)

    MATH  Google Scholar 

  10. Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inform. Sci. 179, 3964–3972 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Blanco-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanco-Fernández, A., Colubi, A., García-Bárzana, M., Montenegro, M. (2013). A Linear Regression Model for Interval-Valued Response Based on Set Arithmetic. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics