[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symbolic-Numerical Calculations of High-|m| Rydberg States and Decay Rates in Strong Magnetic Fields

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Abstract

Symbolic-numeric solving of the boundary value problem for the Schrödinger equation in cylindrical coordinates is given. This problem describes the impurity states of a quantum wire or a hydrogen-like atom in a strong homogeneous magnetic field. It is solved by applying the Kantorovich method that reduces the problem to the boundary-value problem for a set of ordinary differential equations with respect to the longitudinal variables. The effective potentials of these equations are given by integrals over the transverse variable. The integrands are products of the transverse basis functions depending on the longitudinal variable as a parameter and their first derivatives. To solve the problem at high magnetic quantum numbers |m| and study its solutions we present an algorithm implemented in Maple that allows to obtain analytic expressions for the effective potentials and for the transverse dipole moment matrix elements. The efficiency and accuracy of the derived algorithm and that of Kantorovich numerical scheme are confirmed by calculating eigenenergies and eigenfunctions, dipole moments and decay rates of low-excited Rydberg states at high |m|~200 of a hydrogen atom in the laboratory homogeneous magnetic field γ~2.35×10− 5(B~6T).

This work was partially supported by the RFBR Grants Nos. 10-02-00200 and 11-01-00523.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Phys. Commun. 179, 685–693 (2008)

    Article  MATH  Google Scholar 

  2. Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 205–218. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A., Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a strong magnetic field by using the angular oblate spheroidal functions. J. Phys. A 40, 11485–11524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem for charged particles produced by confining environment. Phys. At. Nucl. 72, 768–778 (2009)

    Article  Google Scholar 

  5. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys. Commun. 178, 301–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Derbov, V.L., Serov, V.V.: Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer, Heidelberg (2010); arXiv:1104.2292

    Chapter  Google Scholar 

  7. Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.: Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem with Hydrogen-Like Impurity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 334–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a Coupled Pair of Ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

    Article  MATH  Google Scholar 

  11. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Derbov, V.L., Melnikov, L.A., Serov, V.V.: Photoionization and recombination of a hydrogen atom in a magnetic field. Phys. Rev. A 77, 034702–1–034702–4 (2008)

    Google Scholar 

  12. Guest, J.R., Choi, J.-H., Raithel, G.: Decay rates of high-|m| Rydberg states in strong magnetic fields. Phys. Rev. A 68, 022509–1–022509–9 (2003)

    Google Scholar 

  13. Guest, J.R., Raithel, G.: High-|m| Rydberg states in strong magnetic fields. Phys. Rev. A 68, 052502–1–052502–9 (2003)

    Google Scholar 

  14. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusev, A., Vinitsky, S., Chuluunbaatar, O., Gerdt, V., Le Hai, L., Rostovtsev, V. (2012). Symbolic-Numerical Calculations of High-|m| Rydberg States and Decay Rates in Strong Magnetic Fields. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics