Abstract
Symbolic-numeric solving of the boundary value problem for the Schrödinger equation in cylindrical coordinates is given. This problem describes the impurity states of a quantum wire or a hydrogen-like atom in a strong homogeneous magnetic field. It is solved by applying the Kantorovich method that reduces the problem to the boundary-value problem for a set of ordinary differential equations with respect to the longitudinal variables. The effective potentials of these equations are given by integrals over the transverse variable. The integrands are products of the transverse basis functions depending on the longitudinal variable as a parameter and their first derivatives. To solve the problem at high magnetic quantum numbers |m| and study its solutions we present an algorithm implemented in Maple that allows to obtain analytic expressions for the effective potentials and for the transverse dipole moment matrix elements. The efficiency and accuracy of the derived algorithm and that of Kantorovich numerical scheme are confirmed by calculating eigenenergies and eigenfunctions, dipole moments and decay rates of low-excited Rydberg states at high |m|~200 of a hydrogen atom in the laboratory homogeneous magnetic field γ~2.35×10− 5(B~6T).
This work was partially supported by the RFBR Grants Nos. 10-02-00200 and 11-01-00523.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Phys. Commun. 179, 685–693 (2008)
Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 205–218. Springer, Heidelberg (2006)
Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A., Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a strong magnetic field by using the angular oblate spheroidal functions. J. Phys. A 40, 11485–11524 (2007)
Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem for charged particles produced by confining environment. Phys. At. Nucl. 72, 768–778 (2009)
Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys. Commun. 178, 301–330 (2008)
Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Derbov, V.L., Serov, V.V.: Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer, Heidelberg (2010); arXiv:1104.2292
Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.: Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem with Hydrogen-Like Impurity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 334–349. Springer, Heidelberg (2009)
Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)
Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a Coupled Pair of Ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)
Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun. 180, 1358–1375 (2009)
Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Derbov, V.L., Melnikov, L.A., Serov, V.V.: Photoionization and recombination of a hydrogen atom in a magnetic field. Phys. Rev. A 77, 034702–1–034702–4 (2008)
Guest, J.R., Choi, J.-H., Raithel, G.: Decay rates of high-|m| Rydberg states in strong magnetic fields. Phys. Rev. A 68, 022509–1–022509–9 (2003)
Guest, J.R., Raithel, G.: High-|m| Rydberg states in strong magnetic fields. Phys. Rev. A 68, 052502–1–052502–9 (2003)
Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gusev, A., Vinitsky, S., Chuluunbaatar, O., Gerdt, V., Le Hai, L., Rostovtsev, V. (2012). Symbolic-Numerical Calculations of High-|m| Rydberg States and Decay Rates in Strong Magnetic Fields. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-32973-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32972-2
Online ISBN: 978-3-642-32973-9
eBook Packages: Computer ScienceComputer Science (R0)