Abstract
We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli’s probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Physical Review A 59, 4249–4254 (1999)
Don, C., Shmuel, W.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)
Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calculus, Ph.D. thesis. University of Warwick (2011)
Davidson, T.A.S., Gay, S., Nagarajan, R., Puthoor, I.V.: Analysis of a quantum error correcting code using quantum process calculus. In: Proceedingds of QPL 2011, the 8th Workhop on Quantum Physics and Logic, pp. 107–120 (2011)
D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Mathematical Structures in Computer Science 16, 429–451 (2006)
Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Probabilistic bisimulations for quantum processes. Information and Computation 205, 1608–1639 (2007)
Feng, Y., Duan, R.Y., Ying, M.S.: Bisimulation for quantum processes. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp. 523–534 (2011)
Gay, S.J., Nagarajan, R.: Communicating Quantum Processes. In: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages (POPL), pp. 145–157 (2005)
Gay, S.J., Nagarajan, R.: Types and typechecking for communicating quantum processes. Mathematical Structures in Computer Science 16, 375–406 (2006)
Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A Model Checker for Quantum Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547. Springer, Heidelberg (2008)
Gay, S.J., Papanikolaou, N., Nagarajan, R.: Specification and verification of quantum protocols. In: Gay, S.J., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 414–472. Cambridge University Press (2010)
Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs. ACM Transactions on Programming Languages and Systems 5, 356–380 (1983)
Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the First ACM Conference on Computing Frontiers, pp. 111–119 (2004)
Lalire, M.: Relations among quantum processes: bisimilarity and congruence. Mathematical Structures in Computer Science 16, 407–428 (2006)
Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed quantum computation: operational semantics. In: Proceedings of the 2nd International Workshop on Quantum Programming Languages (2004)
Li, Y.Y., Yu, N.K., Ying, M.S.: Termination of nondeterministic quantum programs. Short presentation of LICS (2012), (For full paper, see arXiv: 1201.0891)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Selinger, P.: Towards a quantum programming language. Mathematical Structure in Computer Science 14, 527–586 (2004)
Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM Journal on Computing 13, 292–314 (1984)
Ying, M.S.: Floyd-Hoare logic for quantum programs. ACM Transactions on Programming Languages and Systems 33, art. no: 19 (2011)
Ying, M.S., Feng, Y.: An algebraic language for distributed quantum computing. IEEE Transactions on Computers 58, 728–743 (2009)
Ying, M.S., Feng, Y., Duan, R.Y., Ji, Z.F.: An algebra of quantum processes. ACM Transactions on Computational Logic 10, art. no. 19 (2009)
Ying, M.S., Feng, Y.: Quantum loop programs. Acta Informatica 47, 221–250 (2010)
Ying, M.S., Yu, N.K., Feng, Y., Duan, R.Y.: Verification of Quantum Programs, arXiv:1106.4063
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, N., Ying, M. (2012). Reachability and Termination Analysis of Concurrent Quantum Programs. In: Koutny, M., Ulidowski, I. (eds) CONCUR 2012 – Concurrency Theory. CONCUR 2012. Lecture Notes in Computer Science, vol 7454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32940-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-32940-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32939-5
Online ISBN: 978-3-642-32940-1
eBook Packages: Computer ScienceComputer Science (R0)