[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

Abstract

Learning Classifier Systems (LCSs) are a unique brand of multifaceted evolutionary algorithms well suited to complex or heterogeneous problem domains. One such domain involves data mining within genetic association studies which investigate human disease. Previously we have demonstrated the ability of Michigan-style LCSs to detect genetic associations in the presence of two complicating phenomena: epistasis and genetic heterogeneity. However, LCSs are computationally demanding and problem scaling is a common concern. The goal of this paper was to apply and evaluate expert knowledge-guided covering and mutation operators within an LCS algorithm. Expert knowledge, in the form of Spatially Uniform ReliefF (SURF) scores, was incorporated to guide learning towards regions of the problem domain most likely to be of interest. This study demonstrates that expert knowledge can improve learning efficiency in the context of a Michigan-style LCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Urbanowicz, R., Moore, J.: LCSs: A Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and Applications 2009 (2009)

    Google Scholar 

  2. Bacardit, J., Goldberg, D.E., Butz, M.V., Llorà, X., Garrell, J.M.: Speeding-Up Pittsburgh Learning Classifier Systems: Modeling Time and Accuracy. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 1021–1031. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bacardit, J., Stout, M., Hirst, J., Sastry, K., Llorà, X., Krasnogor, N.: Automated alphabet reduction method with evolutionary algorithms for protein structure prediction. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 346–353. ACM (2007)

    Google Scholar 

  4. Llorà, X., Sastry, K.: Fast rule matching for lcss via vector instructions. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1513–1520. ACM (2006)

    Google Scholar 

  5. Bacardit, J., Burke, E., Krasnogor, N.: Improving the scalability of rule-based evolutionary learning. Memetic Computing 1(1), 55–67 (2009)

    Article  Google Scholar 

  6. Franco, M., Krasnogor, N., Bacardit, J.: Speeding up the evaluation of evolutionary learning systems using gpgpus. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1039–1046. ACM (2010)

    Google Scholar 

  7. Shriner, D., Vaughan, L., Padilla, M., et al.: Problems with genome-wide association studies. Science 316(5833) (2007) 1840c

    Google Scholar 

  8. Eichler, E., Flint, J., Gibson, G., Kong, A., Leal, S., Moore, J., Nadeau, J.: Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics 11(6), 446–450 (2010)

    Article  Google Scholar 

  9. Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease: analytical retooling for complexity. TRENDS in Genetics 20(12), 640–647 (2004)

    Article  Google Scholar 

  10. Urbanowicz, R., Moore, J.: The application of michigan-style lcss to address genetic heterogeneity and epistasis in association studies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 195–202. ACM (2010)

    Google Scholar 

  11. Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: An Analysis Pipeline with Visualization-Guided Knowledge Discovery for Michigan-Style LCSs. IEEE CIM Special Issue on Computational Intelligence in Bioinformatics (2012)

    Google Scholar 

  12. Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: Instance-Linked Attribute Tracking and Feedback for Michigan-Style Supervised LCSs. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (2012)

    Google Scholar 

  13. Jamshidi, M., et al.: Incorporating a-priori expert knowledge in genetic algorithms. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 300–305. IEEE (1997)

    Google Scholar 

  14. Moore, J.H., White, B.C.: Exploiting Expert Knowledge in Genetic Programming for Genome-Wide Genetic Analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Greene, C.S., White, B.C., Moore, J.H.: An Expert Knowledge-Guided Mutation Operator for Genome-Wide Genetic Analysis Using Genetic Programming. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 30–40. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Greene, C.S., White, B.C., Moore, J.H.: Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1289–1296. IEEE (2009)

    Google Scholar 

  17. Greene, C.S., Penrod, N., Kiralis, J., Moore, J.: Spatially uniform relieff (surf) for computationally-efficient filtering of gene-gene interactions. BioData Mining 2(1), 1–9 (2009)

    Article  Google Scholar 

  18. Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based LCSs: models, analysis and applications to classification tasks. Evolutionary Computation 11(3), 209–238 (2003)

    Article  Google Scholar 

  19. Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  20. Orriols-Puig, A., Bernadó-Mansilla, E.: Revisiting ucs: Description, fitness sharing, and comparison with xcs. Learning Classifier Systems, 96–116 (2008)

    Google Scholar 

  21. Moore, J.H., White, B.C.: Tuning ReliefF for Genome-Wide Genetic Analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Urbanowicz, R.J., Moore, J.H.: The Application of Pittsburgh-Style Learning Classifier Systems to Address Genetic Heterogeneity and Epistasis in Association Studies. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 404–413. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Urbanowicz, R., Kiralis, J., Fisher, J., Moore, J.: Predicting Difficulty in Simulated Genetic Models: Metrics for Model Architecture Selection. BMC Bioinformatics (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urbanowicz, R.J., Granizo-Mackenzie, D., Moore, J.H. (2012). Using Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics