Abstract
Learning Classifier Systems (LCSs) are a unique brand of multifaceted evolutionary algorithms well suited to complex or heterogeneous problem domains. One such domain involves data mining within genetic association studies which investigate human disease. Previously we have demonstrated the ability of Michigan-style LCSs to detect genetic associations in the presence of two complicating phenomena: epistasis and genetic heterogeneity. However, LCSs are computationally demanding and problem scaling is a common concern. The goal of this paper was to apply and evaluate expert knowledge-guided covering and mutation operators within an LCS algorithm. Expert knowledge, in the form of Spatially Uniform ReliefF (SURF) scores, was incorporated to guide learning towards regions of the problem domain most likely to be of interest. This study demonstrates that expert knowledge can improve learning efficiency in the context of a Michigan-style LCS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Urbanowicz, R., Moore, J.: LCSs: A Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and Applications 2009 (2009)
Bacardit, J., Goldberg, D.E., Butz, M.V., Llorà, X., Garrell, J.M.: Speeding-Up Pittsburgh Learning Classifier Systems: Modeling Time and Accuracy. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 1021–1031. Springer, Heidelberg (2004)
Bacardit, J., Stout, M., Hirst, J., Sastry, K., Llorà, X., Krasnogor, N.: Automated alphabet reduction method with evolutionary algorithms for protein structure prediction. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 346–353. ACM (2007)
Llorà, X., Sastry, K.: Fast rule matching for lcss via vector instructions. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1513–1520. ACM (2006)
Bacardit, J., Burke, E., Krasnogor, N.: Improving the scalability of rule-based evolutionary learning. Memetic Computing 1(1), 55–67 (2009)
Franco, M., Krasnogor, N., Bacardit, J.: Speeding up the evaluation of evolutionary learning systems using gpgpus. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1039–1046. ACM (2010)
Shriner, D., Vaughan, L., Padilla, M., et al.: Problems with genome-wide association studies. Science 316(5833) (2007) 1840c
Eichler, E., Flint, J., Gibson, G., Kong, A., Leal, S., Moore, J., Nadeau, J.: Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics 11(6), 446–450 (2010)
Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease: analytical retooling for complexity. TRENDS in Genetics 20(12), 640–647 (2004)
Urbanowicz, R., Moore, J.: The application of michigan-style lcss to address genetic heterogeneity and epistasis in association studies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 195–202. ACM (2010)
Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: An Analysis Pipeline with Visualization-Guided Knowledge Discovery for Michigan-Style LCSs. IEEE CIM Special Issue on Computational Intelligence in Bioinformatics (2012)
Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: Instance-Linked Attribute Tracking and Feedback for Michigan-Style Supervised LCSs. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (2012)
Jamshidi, M., et al.: Incorporating a-priori expert knowledge in genetic algorithms. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 300–305. IEEE (1997)
Moore, J.H., White, B.C.: Exploiting Expert Knowledge in Genetic Programming for Genome-Wide Genetic Analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)
Greene, C.S., White, B.C., Moore, J.H.: An Expert Knowledge-Guided Mutation Operator for Genome-Wide Genetic Analysis Using Genetic Programming. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 30–40. Springer, Heidelberg (2007)
Greene, C.S., White, B.C., Moore, J.H.: Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1289–1296. IEEE (2009)
Greene, C.S., Penrod, N., Kiralis, J., Moore, J.: Spatially uniform relieff (surf) for computationally-efficient filtering of gene-gene interactions. BioData Mining 2(1), 1–9 (2009)
Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based LCSs: models, analysis and applications to classification tasks. Evolutionary Computation 11(3), 209–238 (2003)
Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)
Orriols-Puig, A., Bernadó-Mansilla, E.: Revisiting ucs: Description, fitness sharing, and comparison with xcs. Learning Classifier Systems, 96–116 (2008)
Moore, J.H., White, B.C.: Tuning ReliefF for Genome-Wide Genetic Analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007)
Urbanowicz, R.J., Moore, J.H.: The Application of Pittsburgh-Style Learning Classifier Systems to Address Genetic Heterogeneity and Epistasis in Association Studies. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 404–413. Springer, Heidelberg (2010)
Urbanowicz, R., Kiralis, J., Fisher, J., Moore, J.: Predicting Difficulty in Simulated Genetic Models: Metrics for Model Architecture Selection. BMC Bioinformatics (submitted)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urbanowicz, R.J., Granizo-Mackenzie, D., Moore, J.H. (2012). Using Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)