Abstract
Algorithm selection and configuration is a challenging problem in the continuous optimization domain. An approach to tackle this problem is to develop a model that links landscape analysis measures and algorithm parameters to performance. This model can be then used to predict algorithm performance when a new optimization problem is presented. In this paper, we investigate the use of a machine learning framework to build such a model. We demonstrate the effectiveness of our technique using CMA-ES as a representative algorithm and a feed-forward backpropagation neural network as the learning strategy. Our experimental results show that we can build sufficiently accurate predictions of an algorithm’s expected performance. This information is used to rank the algorithm parameter settings based on the current problem instance, hence increasing the probability of selecting the best configuration for a new problem.
This work has been partially funded through a 2012-2013 DAAD/Go8 Grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. J. ACM 56, 22:1–22:52 (2009)
Rice, J.: The algorithm selection problem. In: Advances in Computers, vol.15, pp. 65–118. Elsevier (1976)
Smith-Miles, K.A., James, R.J.W., Giffin, J.W., Tu, Y.: A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 89–103. Springer, Heidelberg (2009)
Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking BBOB-2010: Experimental setup. Technical Report RR-7215, INRIA (September 2010)
Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, NTU, Singapore and IIT, Kanpur (2005)
Reeves, C.: Fitness landscapes. In: Search Methodologies, pp. 587–610. Springer (2005)
Hough, P., Williams, P.: Modern machine learning for automatic optimization algorithm selection. In: Proceedings of the INFORMS Artificial Intelligence and Data Mining Workshop (2006)
He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evol. Comput. 15(4), 435–443 (2007)
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)
Francois, O., Lavergne, C.: Design of evolutionary algorithms-a statistical perspective. IEEE Trans. Evol. Comput. 5(2), 129–148 (2001)
Steer, K.C.B., Wirth, A., Halgamuge, S.K.: Information Theoretic Classification of Problems for Metaheuristics. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 319–328. Springer, Heidelberg (2008)
Malan, K., Engelbrecht, A.: Quantifying ruggedness of continuous landscapes using entropy. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pp. 1440–1447 (May 2009)
Caamaño, P., Prieto, A., Becerra, J.A., Bellas, F., Duro, R.J.: Real-Valued Multimodal Fitness Landscape Characterization for Evolution. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 567–574. Springer, Heidelberg (2010)
Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010)
Müller, C.L., Sbalzarini, I.F.: Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011)
Richter, H.: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization. Phys. Nonlinear Phenom. 237(2), 167–186 (2008)
Watson, J., Howe, A.: Focusing on the individual: Why we need new empirical methods for characterizing problem difficulty. In: Working Notes of ECAI 2000 Workshop on Empirical Methods in Artificial Intelligence (August 2000)
Beck, J., Watson, J.: Adaptive search algorithms and fitness-distance correlation. In: Proceedings of the Fifth Metaheuristics International Conference (2003)
Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10(1), 1–34 (2002)
Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 477–484. ACM, New York (2006)
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc. (1995)
Seo, D., Moon, B.: An information-theoretic analysis on the interactions of variables in combinatorial optimization problems. Evol. Comput. 15(2), 169–198 (2007)
Rice, J.: Methodology for the algorithm selection problem. In: Proceedings of the IFIP TC 2.5 Working Conference on Performance Evaluation of Numerical Software (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muñoz, M.A., Kirley, M., Halgamuge, S.K. (2012). A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)