[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

Abstract

Algorithm selection and configuration is a challenging problem in the continuous optimization domain. An approach to tackle this problem is to develop a model that links landscape analysis measures and algorithm parameters to performance. This model can be then used to predict algorithm performance when a new optimization problem is presented. In this paper, we investigate the use of a machine learning framework to build such a model. We demonstrate the effectiveness of our technique using CMA-ES as a representative algorithm and a feed-forward backpropagation neural network as the learning strategy. Our experimental results show that we can build sufficiently accurate predictions of an algorithm’s expected performance. This information is used to rank the algorithm parameter settings based on the current problem instance, hence increasing the probability of selecting the best configuration for a new problem.

This work has been partially funded through a 2012-2013 DAAD/Go8 Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  3. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. J. ACM 56, 22:1–22:52 (2009)

    Google Scholar 

  4. Rice, J.: The algorithm selection problem. In: Advances in Computers, vol.15, pp. 65–118. Elsevier (1976)

    Google Scholar 

  5. Smith-Miles, K.A., James, R.J.W., Giffin, J.W., Tu, Y.: A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 89–103. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  7. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking BBOB-2010: Experimental setup. Technical Report RR-7215, INRIA (September 2010)

    Google Scholar 

  8. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, NTU, Singapore and IIT, Kanpur (2005)

    Google Scholar 

  9. Reeves, C.: Fitness landscapes. In: Search Methodologies, pp. 587–610. Springer (2005)

    Google Scholar 

  10. Hough, P., Williams, P.: Modern machine learning for automatic optimization algorithm selection. In: Proceedings of the INFORMS Artificial Intelligence and Data Mining Workshop (2006)

    Google Scholar 

  11. He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evol. Comput. 15(4), 435–443 (2007)

    Article  Google Scholar 

  12. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)

    Google Scholar 

  13. Francois, O., Lavergne, C.: Design of evolutionary algorithms-a statistical perspective. IEEE Trans. Evol. Comput. 5(2), 129–148 (2001)

    Article  Google Scholar 

  14. Steer, K.C.B., Wirth, A., Halgamuge, S.K.: Information Theoretic Classification of Problems for Metaheuristics. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 319–328. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Malan, K., Engelbrecht, A.: Quantifying ruggedness of continuous landscapes using entropy. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pp. 1440–1447 (May 2009)

    Google Scholar 

  16. Caamaño, P., Prieto, A., Becerra, J.A., Bellas, F., Duro, R.J.: Real-Valued Multimodal Fitness Landscape Characterization for Evolution. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 567–574. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Müller, C.L., Sbalzarini, I.F.: Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Richter, H.: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization. Phys. Nonlinear Phenom. 237(2), 167–186 (2008)

    Article  MATH  Google Scholar 

  20. Watson, J., Howe, A.: Focusing on the individual: Why we need new empirical methods for characterizing problem difficulty. In: Working Notes of ECAI 2000 Workshop on Empirical Methods in Artificial Intelligence (August 2000)

    Google Scholar 

  21. Beck, J., Watson, J.: Adaptive search algorithms and fitness-distance correlation. In: Proceedings of the Fifth Metaheuristics International Conference (2003)

    Google Scholar 

  22. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10(1), 1–34 (2002)

    Article  Google Scholar 

  23. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 477–484. ACM, New York (2006)

    Chapter  Google Scholar 

  24. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  25. Seo, D., Moon, B.: An information-theoretic analysis on the interactions of variables in combinatorial optimization problems. Evol. Comput. 15(2), 169–198 (2007)

    Article  Google Scholar 

  26. Rice, J.: Methodology for the algorithm selection problem. In: Proceedings of the IFIP TC 2.5 Working Conference on Performance Evaluation of Numerical Software (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muñoz, M.A., Kirley, M., Halgamuge, S.K. (2012). A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics