[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Non-Blocking Atomic Commitment Problem in Asynchronous Distributed Systems with Unreliable Failure Detectors

  • Conference paper
Convergence and Hybrid Information Technology (ICHIT 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 310))

Included in the following conference series:

  • 1101 Accesses

Abstract

This paper defines the Non-Blocking Atomic Commitment problem in a message-passing asynchronous system and determines a failure detector to solve the problem. This failure detector, which we call the modal failure detector star, and which we denote by M*, is strictly weaker than the perfect failure detector P but strictly stronger than the eventually perfect failure detector ◇P. The paper shows that at any environment, the problem is solvable with M*.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. Journal of the ACM 43(4), 685–722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chockler, G., Malkhi, D., Reiter, M.K.: Backo protocols for distributed Non-Blocking Atomic Commitment and ordering. In: Proceedings of the 21st International Conference on Distributed Computing Systems, ICDCS-21 (April 2001)

    Google Scholar 

  4. Skeen, D.: Non-Blocking Commit Protocols. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 133–142. ACM Press (1981)

    Google Scholar 

  5. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(3), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gafni, E., Mitzenmacher, M.: Analysis of timing-based Non-Blocking Atomic Commitment with random times. SIAM Journal on Computing 31(3), 816–837 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hadzilacos, V.: A note on group Non-Blocking Atomic Commitment. In: 20th ACM SIGACTSIGOPS Symposium on Principles of Distributed Computing (August 2001)

    Google Scholar 

  8. Joung, Y.-J.: Asynchronous group Non-Blocking Atomic Commitment. In: 17th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 51–60 (June 1998)

    Google Scholar 

  9. Keane, P., Moir, M.: A simple local-spin group Non-Blocking Atomic Commitment algorithm. IEEE Transactions on Parallel and Distributed Systems 12(7), 673–685 (2001)

    Article  Google Scholar 

  10. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Communications of the ACM 17(8), 453–455 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lamport, L.: The Non-Blocking Atomic Commitment problem. Parts I&II. Journal of the ACM 33(2), 313–348 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lodha, S., Kshemkalyan, A.D.: A fair distributed Non-Blocking Atomic Commitment algorithm. IEEE Transactions on Parallel and Distributed Systems 11(6), 537–549 (2000)

    Article  Google Scholar 

  13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)

    Google Scholar 

  14. Gray, J.: A Comparison of the Byzantine Agreement Problem and the Transaction Commit Problem. In: Simons, B., Spector, A.Z. (eds.) Fault-Tolerant Distributed Computing. LNCS, vol. 448, pp. 10–17. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  15. Manivannan, D., Singhal, M.: An efficient fault-tolerant Non-Blocking Atomic Commitment algorithm for distributed systems. In: Proceedings of the ISCA International Conference on Parallel and Distributed Computing Systems, pp. 525–530 (October 1994)

    Google Scholar 

  16. Raynal, M.: Algorithms for Non-Blocking Atomic Commitment. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Ricart, G., Agrawala, A.K.: An optimal algorithm for Non-Blocking Atomic Commitment in computer networks. Communications of the ACM 24(1), 9–17 (1981)

    Article  MathSciNet  Google Scholar 

  18. Singhal, M.: A taxonomy of distributed Non-Blocking Atomic Commitment. Journal of Parallel and Distributed Computing 18(1), 94–101 (1993)

    Article  MATH  Google Scholar 

  19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(3), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, SH., Lee, SH. (2012). Solving Non-Blocking Atomic Commitment Problem in Asynchronous Distributed Systems with Unreliable Failure Detectors. In: Lee, G., Howard, D., Ślęzak, D., Hong, Y.S. (eds) Convergence and Hybrid Information Technology. ICHIT 2012. Communications in Computer and Information Science, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32692-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32692-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32691-2

  • Online ISBN: 978-3-642-32692-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics