Abstract
This work addresses the problem of error concealment in video transmission systems over noisy channels employing Bregman divergences along with regularization. Error concealment intends to improve the effects of disturbances at the reception due to bit-errors or cell loss in packet networks. Bregman regularization gives accurate answers after just some iterations with fast convergence, better accuracy and stability. This technique has an adaptive nature: the regularization functional is updated according to Bregman functions that change from iteration to iteration according to the nature of the neighborhood under study at iteration n. Numerical experiments show that high-quality regularization parameter estimates can be obtained. The convergence is sped up while turning the regularization parameter estimation less empiric, and more automatic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bregman, M.: The Relaxation Method of Finding the Common Point of Convex Sets and its Application to the Solution of Problems in Convex Programming. USSR Comt. Math and Math. Ph. 7(3), 200–217 (1967)
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. J. Willey & Sons (1977)
Stutz, D.: Restauração de Imagens em Escala Nanométrica com Funcional de Regularização de Tikhonov e Computação Paralela. M.Sc. thesis, IPRJ/UERJ, N. Friburgo, RJ, Brazil (2004)
Stutz, D., Silva Neto, A.J., Farias, R.C.: Information Weighted Mean Square Error (IWMSE): Uma Medida de Comparação de Imagens Baseada na Percepção, X EMC, N. Friburgo, RJ, Brazil (2007)
Galatsanos, N.P., Katsaggelos, A.K.: Methods for Choosing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and their Relation. IEEE Trans. on Im. Proc., 322–336 (1992)
Coelho, A.M., Estrela, V.V.: EM-Based Mixture Models Applied to Video Event Detection. In: Principal Component Analysis - Engineering Applications, pp. 102–124. Intech (2012) ISBN 9788563337214, http://www.intechopen.com/books/principal-component-analysis-engineering-applications/em-based-mixture-models-applied-to-video-event-detection
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An Iterative Regularization Method for Total Variation Based Image Restoration. Multiscale Modeling Sim. 4, 460–489 (2005)
Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information Geometry of U-Boost and Bregman Divergence. Neural Comput. 16, 1437–1481 (2004)
Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S.: An Information Theoretic Analysis of Maximum Likelihood Mixture Estimation for Exponential Families. In: Proc. 21st ICML (2004)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, New York (2006)
Hinterberger, W., Scherzer, O.: Models for Image Interpolation Based on the Optical Flow. Computing 66, 231–247 (2001)
Grossauer, H.: Inpainting of Movies Using Optical Flow, Math. Models for Registration and Applications to Med. Imaging, Math. Ind., vol. 10, pp. 151–162. Springer, Berlin (2006)
Slesareva, N., Bruhn, A., Weickert, J.: Optic Flow Goes Stereo: A Variational Method for Estimating Discontinuity-Preserving Dense Disparity Maps. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 33–40. Springer, Heidelberg (2005)
Li, X., Jackson, J.R., Katsaggelos, A.K., Mersereau, R.M.: Multiple Global Affine Motion Model for H.264 Video Coding with Low Bit Rate. In: Proc. SPIE VCIP, San Jose, CA (2005)
Coelho, A.M., Estrela, V.V., de Assis, J.T.: Error Concealment by Means of Clustered Blockwise PCA. In: IEEE Picture Coding Symposium, Chicago, IL, USA (2009)
do Carmo, F.P., Estrela, V.V., de Assis, J.T.: Estimating Motion with Principal Component Regression Strategies. In: Proc. of IEEE MMSP 2009, Rio de Janeiro, RJ, Brazil (2009)
Coelho, A.M., Estrela, V.V.: Data-Driven Motion Estimation with Spatial Adaptation. Intl. J. of Image Proc (IJIP) 6(1), 53–67 (2012), http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume6/Issue1/IJIP-513.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coelho, A.M., Estrela, V.V., do Carmo, F.P., Fernandes, S.R. (2012). Error Concealment by Means of Motion Refinement and Regularized Bregman Divergence. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_78
Download citation
DOI: https://doi.org/10.1007/978-3-642-32639-4_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32638-7
Online ISBN: 978-3-642-32639-4
eBook Packages: Computer ScienceComputer Science (R0)