[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ensemble Methods for Prediction of Parkinson Disease

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

Abstract

Parkinson disease is a degenerative disorder of the central nervous system. In the present paper, we study the effectiveness of regression tree ensembles to predict the presence and severity of symptoms from speech datasets. This is a regression problem. Regression via classification (RvC) is a method in which a regression problem is converted into a classification problem. A discretization process is used to convert continuous target value to classes. The discretized data can be used with classifiers as a classification problem. In this paper, we also study a recently developed RvC ensemble method for the prediction of Parkinson disease. Experimental results suggest that the RvC ensembles perform better than a single regression tree. Experiments also suggest that regression tree ensembles created using bagging procedure can be a useful tool for predicting Parkinson disease. The RvC ensembles and regression tree ensembles performed similarly on the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, A.: Data Transformation for Decision tree Ensembles. Ph.D. thesis, School of Computer Science, University of Manchester (2010)

    Google Scholar 

  2. Ahmad, A., Halawani, S.M., Albidewi, I.: Novel Ensemble Methods for Regression Via Classification Problems. Expert Systems with Applications 39(7), 6396–6401 (2012)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New York Inc. (2008)

    Google Scholar 

  4. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth International Group, CA (1984)

    MATH  Google Scholar 

  6. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  7. de Rijk, M.C., Launer, L.J., Berger, K., Breteler, M.M., Dartigues, F., Baldereschi, Fratiglioni, L., Lobo, A., Martinez-Lage, J., Trenkwalder, C., Hofman, A.: Prevalence of Parkinson’s Disease in Europe: A Collaborative Study of Population-based Cohorts. Neurology 54, 21–23 (2000)

    Google Scholar 

  8. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

  9. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dougherty, J., Kahavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proceedings of the Twelth International Conference on Machine Learning (1995)

    Google Scholar 

  11. Fayyad, U.M., Irani, K.B.: Multi-interval Discretization of Continuous valued Attributes for Classification Learning. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 1022–1027 (1993)

    Google Scholar 

  12. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  14. Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  15. Indurkhya, N., Weiss, S.M.: Solving Regression Problems with Rule-based Ensemble Classifiers. In: ACM International Conference Knowledge Discovery and Data Mining (KDD 2001), pp. 287–292 (2001)

    Google Scholar 

  16. Jankovic, J.: Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatr. 79(4), 368–376 (2008)

    Article  Google Scholar 

  17. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)

    Google Scholar 

  18. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

    Google Scholar 

  19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  20. Samii, A., Ransom, B.R., Nutt, J.G.: Parkinson’s Disease. Lancet 363(9423), 1783–1793 (2004)

    Article  Google Scholar 

  21. Singh, N., Pillay, V., Choonara, Y.E.: Advances in the Treatment of Parkinson’s Disease. Progress in Neurobiology 81, 29–44 (2007)

    Article  Google Scholar 

  22. Torgo, L., Gama, J.: Regression by Classification. In: Advances in Artificial Intelligence, pp. 51–60 (1996)

    Google Scholar 

  23. Torgo, L., Gama, J.: Regression using Classification Algorithms. Intelligent Data Analysis 4(1), 275–292 (1997)

    Article  Google Scholar 

  24. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate Telemonitoring of Parkinson’s Disease Progression by Non-invasive Speech Tests. IEEE Transactions on Biomedical Engineering 57(4), 884–893 (2010)

    Article  Google Scholar 

  25. Tumer, K., Ghosh, J.: Error Correlation and Error Reduction in Ensemble Classifiers. Connect. Sci. 8(3), 385–404 (1996)

    Article  Google Scholar 

  26. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halawani, S.M., Ahmad, A. (2012). Ensemble Methods for Prediction of Parkinson Disease. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics