Abstract
Frontal face images are segmented into 7 regions using only sum and difference histograms as pixel information, without any a priori knowledge. In the training phase, a decision tree is created using a projection pursuit algorithm: in each step, the optimal one-dimensional projection is chosen by a simulated annealing process according to a projection index, and classes are isolated by a decision boundary that maximizes class separability, until the end nodes contain only one class each. Satisfactory qualitative and quantitative results were obtained and presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Open Computer Vision Library (April 2012), http://sourceforge.net/projects/opencvlibrary/
The GNU Image Manipulation Program (April 2012), http://www.gimp.org/
Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–250. ACM (2001)
Chrisóstomo, H.B., Laboreiro, V.R.S., Araujo, T.P.d., Maia, J.E.B.: Face segmentation based on texture classification and heuristic. In: X Congresso Brasileiro de Inteligência Computacional (CBIC) (November 2011)
Friedman, J.H.: Exploratory projection pursuit. Journal of the American Statistical Association, 249–266 (1987)
Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers 100(9), 881–890 (1974)
Gonzalez, R.C., Woods, R.E.: Processamento Digital de Imagens, 3rd edn. Prentice Hall - Pearson, São Paulo (2009); Trad. C. Yamagami e L. Piamonte
Hall, P.: On polynomial-based projection indices for exploratory projection pursuit. The Annals of Statistics 17(2), 589–605 (1989)
Huber, P.J.: Projection pursuit. The Annals of Statistics, 435–475 (1985)
Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics 26(189-206), 1 (1984)
Jones, M.C., Sibson, R.: What is projection pursuit? Journal of the Royal Statistical Society. Series A (General), pp. 1–37 (1987)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671 (1983)
Lee, E.K., Cook, D., Klinke, S., Lumley, T.: Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics 14(4), 831–846 (2005)
Li, H., Ngan, K.N., Liu, Q.: FaceSeg: automatic face segmentation for real-time video. IEEE Transactions on Multimedia 11(1), 77–88 (2009)
Liu, L., Fieguth, P.: Texture classification from random features. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 574–586 (2012)
Liu, X., Wang, D.L.: Image and texture segmentation using local spectral histograms. IEEE Transactions on Image Processing 15(10), 3066–3077 (2006)
Natrella, M.: NIST/SEMATECH e-Handbook of Statistical Methods (2010), http://www.itl.nist.gov/div898/handbook/ (accessed: March 23, 2012)
Pakhira, M.K.: Computer Graphics, Multimedia, and Animation. PHI Learning Pvt. Ltd., New Delhi (2008)
Phillips, P.J.: The facial recognition technology FERET database. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2004)
Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)
Shylaja, S.S., Balasubramanya Murthy, K.N., Natarajan, S., Prasad, A., Modi, A., Harlalka, S.: Feature extraction using marker based watershed segmentation on the human face. In: 2012 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (January 2012) (to appear)
Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011)
Tao, C., Shanxua, D., Fangrui, L., Ting, R.: Face and facial feature localization based on color segmentation and symmetry transform. In: International Conference on Multimedia Information Networking and Security, MINES 2009, vol. 2, pp. 185–189. IEEE (2009)
Tukey, J.W.: Exploratory Data Analysis. Addison Wesley, Reading (1977)
Unser, M.: Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence (1), 118–125 (1986)
Velloso, M.L.F., Carneiro, T.A.A., Souza, F.J.D.: Pattern spectra for texture segmentation of gray-scale images. In: 7th International Conference on Intelligent Systems Design and Applications, ISDA 2007, pp. 347–352. IEEE (2007)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I–511. IEEE (2001)
Zhao, W., Chellappa, R. (eds.): Face Processing: Advanced Modeling and Methods. Academic Press, San Diego (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laboreiro, V.R.S., Maia, J.E.B., de Araujo, T.P. (2012). Face Segmentation Using Projection Pursuit for Texture Classification. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-32639-4_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32638-7
Online ISBN: 978-3-642-32639-4
eBook Packages: Computer ScienceComputer Science (R0)