[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

  • 1465 Accesses

Abstract

We study the problem of testing if the polynomial computed by an arithmetic circuit is identically zero (ACIT). We give a deterministic polynomial time algorithm for this problem when the inputs are read-twice formulas. This algorithm also computes the MLIN predicate, testing if the input circuit computes a multilinear polynomial.

We further study two related computational problems on arithmetic circuits. Given an arithmetic circuit C, 1) ZMC: test if a given monomial in C has zero coefficient or not, and 2) MonCount: compute the number of monomials in C. These problems were introduced by Fournier, Malod and Mengel [STACS 2012], and shown to characterize various levels of the counting hierarchy (CH).

We address the above problems on read-restricted arithmetic circuits and branching programs. We prove several complexity characterizations for the above problems on these restricted classes of arithmetic circuits.

Partially supported by Indo-German Max Planck Center (IMPECS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Saha, C., Saptharishi, R., Saxena, N.: Jacobian hits circuits: Hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits. In: STOC (to Appear, 2012)

    Google Scholar 

  2. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: FOCS, pp. 67–75 (2008)

    Google Scholar 

  3. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli (2004)

    Google Scholar 

  4. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for multilinear constant-read formulae. In: CCC, pp. 273–282 (2011)

    Google Scholar 

  6. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  7. Buss, S.: The Boolean formula value problem is in ALOGTIME. In: STOC, pp. 123–131 (1987)

    Google Scholar 

  8. Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm for formula evaluation. SIAM Journal of Computation 21(4), 755–780 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System Sciences 57, 200–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Datta, S., Mahajan, M., Rao, B.V.R., Thomas, M., Vollmer, H.: Counting classes and the fine structure between NC1 and L. Theoretical Computer Science 417, 36–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fournier, H., Malod, G., Mengel, S.: Monomials in arithmetic circuits: Complete problems in the counting hierarchy. In: STACS (to appear, 2012)

    Google Scholar 

  12. Jansen, M.J., Qiao, Y., Sarma, J.M.N.: Deterministic black-box identity testing π-ordered algebraic branching programs. In: FSTTCS, pp. 296–307 (2010)

    Google Scholar 

  13. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koiran, P., Perifel, S.: The complexity of two problems on arithmetic circuits. Theoretical Computer Science 389(1-2), 172–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: STOC, pp. 507–516 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahajan, M., Rao, B.V.R., Sreenivasaiah, K. (2012). Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics