[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing with Large Populations Using Interactions

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We define a general model capturing the behavior of a population of anonymous agents that interact in pairs. This model captures some of the main features of opportunistic networks, in which nodes (such as the ones of a mobile ad hoc networks) meet sporadically. For its reminiscence to Population Protocol, we call our model Large-Population Protocol, or LPP. We are interested in the design of LPPs enforcing, for every ν ∈ [0,1], a proportion ν of the agents to be in a specific subset of marked states, when the size of the population grows to infinity; In which case, we say that the protocol computes ν. We prove that, for every ν ∈ [0,1], ν is computable by a LPP if and only if ν is algebraic. Our positive result is constructive. That is, we show how to construct, for every algebraic number ν ∈ [0,1], a protocol which computes ν.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021 (1994)

    Article  Google Scholar 

  2. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably Computable Properties of Network Graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

    Google Scholar 

  4. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC, pp. 292–299 (2006)

    Google Scholar 

  5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)

    Article  Google Scholar 

  6. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing Population Protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21(3), 183–199 (2008)

    Article  Google Scholar 

  8. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distributed Computing 21(2), 87–102 (2008)

    Article  Google Scholar 

  9. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93, 106–125 (2007)

    Google Scholar 

  10. Aupy, G., Bournez, O.: On the number of binary-minded individuals required to compute \(\sqrt{1/2}\). Theoretical Computer Science 412(22), 2219–2456 (2010)

    MathSciNet  Google Scholar 

  11. Berry, G.: The chemical abstract machine. TCS 96(1), 217–248 (1992)

    Article  MATH  Google Scholar 

  12. Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Convergence in multiagent coordination, consensus, and flocking. In: 44th IEEE Conf. on Decision and Control, pp. 2996–3000 (2005)

    Google Scholar 

  13. Bournez, O., Chalopin, J., Cohen, J., Koegler, X., Rabie, M.: Computing with Pavlovian Populations. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 409–420. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Bournez, O., Chassaing, P., Cohen, J., Gerin, L., Koegler, X.: On the convergence of population protocols when population goes to infinity. Applied Math. and Computation (2009)

    Google Scholar 

  15. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing 6(6), 606–620 (2007)

    Article  Google Scholar 

  16. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic Verification of Population Protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Chatzigiannakis, I., Spirakis, P.G.: The Dynamics of Probabilistic Population Protocols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Chazelle, B.: Natural algorithms. In: SODA, pp. 422–431 (2009)

    Google Scholar 

  19. Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for the verification of population protocols. In: ICDCS, pp. 215–224 (2011)

    Google Scholar 

  20. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Transactions on Automatic Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  21. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When Birds Die: Making Population Protocols Fault-Tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Fernández, A., Gramoli, V., Jiménez, E., Kermarrec, A.-M., Raynal, M.: Distributed slicing in dynamic systems. In: ICDCS (2007)

    Google Scholar 

  23. Gramoli, V., Vigfusson, Y., Birman, K., Kermarrec, A.-M., van Renesse, R.: Slicing distributed systems. IEEE Trans. Computers 58(11), 1444–1455 (2009)

    Article  Google Scholar 

  24. Gupta, I., Nagda, M., Devaraj, C.F.: The design of novel distributed protocols from differential equations. Distributed Computing 20(2), 95–114 (2007)

    Article  Google Scholar 

  25. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Academic Press (2003)

    Google Scholar 

  26. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bulletin of the American Mathematical Society 4, 479–519 (2003)

    Article  MathSciNet  Google Scholar 

  27. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks and human mobility in conference environments. In: WDTN, pp. 244–251 (2005)

    Google Scholar 

  28. Jelasity, M., Kermarrec, A.-M.: Ordered slicing of very large-scale overlay networks. In: Sixth IEEE International Conference on Peer-to-Peer Computing, P2P, pp. 117–124 (2006)

    Google Scholar 

  29. Juang, P., Oki, H., Wang, Y., Martonosi, M., Shiuan Peh, L., Rubenstein, D.: Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In: ASPLOS, pp. 96–107 (2002)

    Google Scholar 

  30. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murray, J.D.: Mathematical Biology. I: An Introduction, 3rd edn. Springer (2002)

    Google Scholar 

  32. Wang, Y., Jain, S., Martonosi, M., Fall, K.: Erasure-coding based routing for opportunistic networks. In: WTDN, pp. 229–236 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournez, O., Fraigniaud, P., Koegler, X. (2012). Computing with Large Populations Using Interactions. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics